Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 23080048-15    https://doi.org/10.11896/cldb.23080048
  特种工程材料 |
固液相变材料的封装制备及在建筑领域的研究进展
成鑫磊1,2, 穆锐1,2, 孙涛1,2,*, 刘元雪1,2, 胡志德1, 蒋昊洋1
1 中国人民解放军陆军勤务学院,重庆 401331
2 岩土力学与地质环境保护重庆市重点实验室,重庆 401331
Incorporation Technique and Preparation Process of Solid-Liquid Phase Change Material and Its Research Progress in Construction Field
CHENG Xinlei1,2, MU Rui1,2, SUN Tao1,2,*, LIU Yuanxue1,2, HU Zhide1, JIANG Haoyang1
1 Army Logistics Academy of PLA, Chongqing 401331, China
2 Chongqing Key Laboratory of Geomechanics & Geoenvironmental Protection, Chongqing 401331, China
下载: 
输出:  BibTeX | EndNote (RIS)      
摘要 随着人类社会的快速发展,人们对建筑环境的舒适度要求越来越高,但建筑能耗已逐渐成为绿色建造节能的突出性问题。相变储能技术是指通过相变材料的储热特性来储存或释放热量的热储能方式,最终实现调控温度的目标。近年来,相变材料凭借其储热密度高、等温相变等特性,常以潜热形式放出或吸收热量,从而在建筑领域中发挥不可替代的作用,使相变储能技术在建筑领域中具有良好的应用前景。随着相变材料的制备、复合、封装技术的不断发展,越来越多的相变材料与建筑材料、构件结合使用,为建筑领域的保温储能材料提供了新的发展模式。鉴于此,本文从建筑领域中常见的相变材料出发,以固液相变材料为例,对相变材料的传热理论、封装方法、传热储能、工程应用等几个方面的研究和应用情况进行了简要的介绍与综述,提出了相变材料未来在建筑领域的推广应用中可能存在的关键科学问题、面临的风险挑战,并展望了其未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
成鑫磊
穆锐
孙涛
刘元雪
胡志德
蒋昊洋
关键词:  固液相变材料  传热机理  封装  保温隔热应用    
Abstract: With the rapid development of human society, people have increasingly higher demands of construction indoor thermal comfort, but the continuous increase of building energy consumption in the process of building development is a prominent issue of building energy conservation. Phase change energy storage technology refers to the storage or release the heat through the thermal storage characteristics of phase change materials, and ultimately achieve the goal of temperature regulation. In recent years, the high heat storage density, isothermal phase change process, releasing or absorbing heat by latent heat makes phase change materials a unique advantage in the energy storage technology which in turn enjoys bright prospects in their application in construction field. With the continuous development of phase change material preparation, composite and encapsulation technology, more and more phase change materials are incorporated in building materials and components, which provides a new development model for thermal insulation and energy storage materials in the construction field. This paper starts with ela-borating on the traditional phase change materials and further reviews the heat transfer theory, incorporation technique, heat transfer and energy storage, and engineering applications of phase change materials commonly used in construction field, and looks forward to the problems, challenges, and future development direction of phase change materials research and application in this field.
Key words:  solid-liquid phase change material    heat transfer theory    incorporation technique    thermal insulation application
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TB34  
基金资助: 国家自然科学基金(41877219);重庆市自然科学基金院士专项(CSTB2023YSZX-JCX0004;cstc2021yszx-jcyjX0002);重庆市自然科学基金面上项目(cstc2021jcyj-msxmX0725);重庆市教育委员会科学技术研究项目(KJZD-K202112901);陆军勤务学院科研创新团队项目(X205071306)
通讯作者:  *孙涛,中国人民解放军陆军勤务学院副教授。2012年天津大学结构工程专业博士毕业后到中国人民解放军陆军勤务学院工作至今。目前主要从事工程抢修抢建、装配式建筑等方面的研究工作。 suntao_tju@126.com   
作者简介:  成鑫磊,2015年6月毕业于重庆交通大学/英国卡迪夫大学,获工学硕士双学位。现为中国人民解放军陆军勤务学院讲师。目前从事智能化装配式结构、结构智能化监测及相变材料性能研究。
引用本文:    
成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
CHENG Xinlei, MU Rui, SUN Tao, LIU Yuanxue, HU Zhide, JIANG Haoyang. Incorporation Technique and Preparation Process of Solid-Liquid Phase Change Material and Its Research Progress in Construction Field. Materials Reports, 2024, 38(5): 23080048-15.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080048  或          http://www.mater-rep.com/CN/Y2024/V38/I5/23080048
1 Sundararajan S, Samui A B, Kulkarni P S. Industrial & Engineering Chemistry Research, 2017, 56(49), 14401.
2 Alva G, Lin Y, Fang G. Energy, 2018, 144, 341.
3 Zhang Y, Umair M M, Zhang S, et al. Journal of Materials Chemistry A, 2019, 7(39), 22218.
4 Nunna A C, Zong Y, Georges L, et al. Energy Reports, 2023, 9, 227.
5 Rathore P K S, Shukla S K. Energy and Buildings, 2021, 236, 110799.
6 Agyenim F, Hewitt N, Eames P, et al. Renewable and Sustainable Energy Reviews, 2010, 14(2), 615.
7 Aydin D, Casey S P, Riffat S. Renewable & Sustainable Energy Reviews, 2015, 41, 356.
8 Ogasawara Y, Eda K, Kitada A. Journal of the Physical Society of Japan, 2005, 74(9), 2439.
9 Frank M, Drikakis D. Entropy, 2018, 20(5), 362.
10 Yin M B, Wang M, Huo Y T, et al. Journal of Energy Storage, 2022, 49, 104116.
11 Farid M M, Khudhair A M, Razack S A K, et al. Energy Conversion and Management, 2004, 45(9-10), 1597.
12 Regin A F, Solanki S C, Saini J S. Renewable & Sustainable Energy Reviews, 2008, 12(9), 2438.
13 Zhang H, Baeyens J, Cáceres G, et al. Progress in Energy and Combustion Science, 2016, 53, 1.
14 Gulfam R, Zhang P, Meng Z. Applied Energy, 2019, 238, 582.
15 Tang T, Zhang W L, Gao N, et al. Journal of Functional Materials, 2022, 53(9), 9035(in Chinese).
唐婷, 张伟丽, 高宁, 等. 功能材料, 2022, 53(9), 9035.
16 Zhang S, Li Z Y, Yao Y P, et al. Nano Energy, 2022, 100, 107476.
17 Zhu H Z, Chen R P, Gou S, et al. Materials Reports, 2021, 35(14), 14198(in Chinese).
朱洪洲, 陈瑞璞, 苟珊, 等. 材料导报, 2021, 35(14), 14198.
18 Liu C, Chen Y J, Zhang C C, et al. Chemical Industry and Engineering Progress, 2022, 41(1), 286(in Chinese).
刘畅, 陈艳军, 张超灿, 等. 化工进展, 2022, 41(1), 286.
19 Zhang Z, Zhang N, Yuan Y, et al. Energy and Buildings, 2023, 278, 112646.
20 Qian T T, Li J H, Min X, et al. Energy Conversion and Management, 2015, 98, 34.
21 Yang Z S, Zhang Q L, Zhang W J, et al. Chemical Industry and Engineering Progress, 2019, 38(10), 4389(in Chinese).
杨兆晟, 张群力, 张文婧, 等. 化工进展, 2019, 38(10), 4389.
22 Kalbasi R, Samali B, Afrand M. Chemosphere, 2022, 311, 137100.
23 Chi J, Lei X, Yu C W, et al. Indoor and Built Environment, 2023.
24 Fallahi A, Guldentops G, Tao M, et al. Applied Thermal Engineering, 2017, 127, 1427.
25 Cui Y Q. CIESC Journal, 2018, 69(S1), 1(in Chinese).
崔艳琦. 化工学报, 2018, 69(S1), 1.
26 Soares N, Costa J J, Samagaio A, et al. Journal of Building Physics, 2014, 37(4), 367.
27 King M F L, Rao P N, Sivakumar A, et al. In: Proceedings of the 2nd International Conference on Functional Material, Manufacturing and Performances(ICFMMP). Phagwara, India, 2022, pp. 1516.
28 Sun X M M, Lee K O, Jin X. Energy, 2018, 163, 383.
29 Li Z X, Al-Rashed A A A A, Rostamzadeh M, et al. Energy Conversion and Management, 2019, 195, 43.
30 Meng D, Dang X, Wang A, et al. Journal of Energy Storage, 2023, 61, 106698.
31 Fan Z, Zhao Y, Shi Y, et al. Energy and Buildings, 2023, 278, 112677.
32 Evers A C, Medina M A, Fang Y. Building and Environment, 2010, 45(8), 1762.
33 Zhou Y, Wang S X. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20), 190(in Chinese).
周莹, 王双喜. 农业工程学报, 2017, 33(20), 190.
34 Hekimoglu G, Nas M, Ouikhalfan M, et al. Energy, 2021, 219, 119588.
35 Yu W Y, Meng Q, Tong H R. Journal of Building Materials, 2023, 26(2), 215(in Chinese).
于文艳, 孟琦, 童浩然. 建筑材料学报, 2023, 26(2), 215.
36 Zhou W, Li S, Feng Y, et al. International Journal of Thermal Sciences, 2023, 188.
37 Wang B, Zhu X Q, Hu J, et al. Materials Reports, 2019, 33(22), 3815(in Chinese).
王博, 朱孝钦, 胡劲, 等. 材料导报, 2019, 33(22), 3815.
38 Wang J, Huang X, Gao H, et al. Chemical Engineering Journal, 2018, 350, 164.
39 Yao C, Kong X, Li Y, et al. Energy Conversion and Management, 2018, 155, 20.
40 Frac M, Pichor W, Szoldra P, et al. Construction and Building Materials, 2021, 275, 122126.
41 Tittelein P, Gibout S, Franquet E, et al. Applied Energy, 2015, 140, 269.
42 Zhou Y, Wang S X, Liu Z H, et al. Acta Energiae Solaris Sinica, 2020, 41(4), 113(in Chinese).
周莹, 王双喜, 刘中华, 等. 太阳能学报, 2020, 41(4), 113.
43 Zalba B, Marin J M, Cabeza L F, et al. Applied Thermal Engineering, 2003, 23(3), 251.
44 Teng T P. Energy Conversion and Management, 2013, 67, 369.
45 Zhou D, Zhao C Y, Tian Y. Applied Energy, 2012, 92, 593.
46 Xu C, Zhang H, Fang G. Journal of Energy Storage, 2022, 51, 104568.
47 Tang B, Wei H, Zhao D, et al. Solar Energy Materials and Solar Cells, 2017, 161, 183.
48 Li T, Yuan Y, Zhang N. Advances in Mechanical Engineering, 2017, 9(6), 1.
49 Gu Q J, Fei H, Wang L Y, et al. Chemical Industry and Engineering Progress, 2019, 38(11), 5033(in Chinese).
顾庆军, 费华, 王林雅, 等. 化工进展, 2019, 38(11), 5033.
50 Kong W, Liu Z, Yang Y, et al. Construction and Building Materials, 2017, 152, 568.
51 Zhang Y Y, Yang J S. Materials Reports, 2020, 34(16), 16144(in Chinese).
张圆圆, 杨建森. 材料导报, 2020, 34(16), 16144.
52 Lv S L, Zhu N, Feng G H. Energy and Buildings, 2006, 38(6), 708.
53 Bontemps A, Ahmad M, Johannes K, et al. Energy and Buildings, 2011, 43(9), 2456.
54 Lazaridis A. International Journal of Heat and Mass Transfer, 1970, 13(9), 1459.
55 Voller V R. IMA Journal of Numerical Analysis, 1985, 5, 201.
56 Chen W K, Guo X C, Zhao L, et al. Acta Energiae Solaris Sinica, 2000(1), 19(in Chinese).
陈伟珂, 郭新川, 赵力, 等. 太阳能学报, 2000(1), 19.
57 Bjurstrom H C B. Joural of Heat Recovery Systems, 1985, 5(3), 233.
58 Vries D. International Journal of Heat and Mass Transfer, 1987, 30(7), 1343.
59 Bejan A K J H. Journal of Energy Resources Technology-Transactions of the ASME, 1992, 114(1), 84.
60 Jean-Pierre S F B. International Journal of Applied Thermodynamics, 2000, 1, 35.
61 Abolghasemi M, Keshavarz A, Mehrabian M A. Heat and Mass Transfer, 2012, 48(11), 1961.
62 Hashemi-Tilehnoee M, Dogonchi A S, Seyyedi S M, et al. Journal of Energy Storage, 2020, 31, 101720.
63 Zhu H Z, Guo B, Li Z. Advances in Civil Engineering, 2022, 2022, 8246365.
64 Asker M, Akal D, Ezan M A. International Journal of Energy Research, 2022, 46(6), 7610.
65 Chuang Y K, Szekely J. International Journal of Heat and Mass Transfer, 1972, 15, 1171.
66 Shamsundar N S E. Journal of Heat Transfer, 1975, 97(3), 333.
67 Caginalp G. Archive for Rational Mechanics and Analysis, 1986, 92(3), 205.
68 Peippo K K P, Lund P D. Energy and Buildings, 1991, 17(4), 259.
69 Chen L Q. Annual Review of Materials Research, 2002, 32, 113.
70 Koric S, Thomas B G, Voller V R. Numerical Heat Transfer Part B-Fundamentals, 2010, 57(6), 396.
71 Pierre G S I, Nader M. In: Proceedings of the Royal Society of Edinburgh Section A: Mathematics. Edinburgh, 2012, pp. 71.
72 Voller V R, Swaminathan C R, Thomas B G. International Journal for Numerical Methods in Engineering, 1990, 30, 875.
73 Voller V R, Falcini F. International Journal of Heat and Mass Transfer, 2013, 58(1-2), 80.
74 Voller V R, Roscani S. International Journal of Heat and Mass Transfer, 2023, 209, 124094.
75 Voller V R, Voller C P. International Journal of Heat and Mass Transfer, 1987, 30(8), 1709.
76 Hunter L W K J R. Journal of Solar Energy Engineering-Transacions of the ASME, 1989, 111, 239.
77 Al-Saadi S N, Zhai Z. Renewable & Sustainable Energy Reviews, 2013, 21, 659.
78 Morgan K. Computer Methods in Applied Mechanics and Engineering, 1981, 28, 275.
79 Lamberg P, Lehtiniemi R, Henell A M. International Journal of Thermal Sciences, 2004, 43(3), 277.
80 Chen Z S, Chen J X, Hu P. Science in China Series E-Technological Sciences, 2007, 50(2), 241.
81 Bhattacharya M, Basak T, Ayappa K G. International Journal of Heat and Mass Transfer, 2002, 45(24), 4881.
82 Krabbenhoft K, Damkilde L, Nazem M. Heat and Mass Transfer, 2007, 43(3), 233.
83 Hadjieva M, Kanev S, Argirov J. Solar Energy Materials and Solar Cells, 1992, 27(2), 181.
84 Huo Y T, Pang X W, Rao Z H. Journal of Engineering Thermophysics, 2021, 42(12), 3201(in Chinese).
霍宇涛, 庞晓文, 饶中浩. 工程热物理学报, 2021, 42(12), 3201.
85 Liu Q, Wang X, Feng X B, et al. Applied Thermal Engineering, 2022, 209, 118283.
86 Konig-Haagen A, Diarce G. Energies, 2023, 16(1), 449.
87 Balland L E L, Cosmao J M, Mouhab N. Chemometrics Intelligent Laboratory Systems, 2000, 50(1), 121.
88 Elliott L I D B, Kyne A G. Progress Energy Combustion Science, 2004, 30(3), 297.
89 Cui M, Zhang C Y, Zhang B W, et al. Journal of Computational Science, 2022, 60, 101593.
90 Zhang Y, Du K, Medina M A, et al. Phase Transitions, 2014, 87(6), 541.
91 Yang H, He Y. International Communications in Heat and Mass Transfer, 2010, 37(4), 385.
92 Alqaed S, Mustafa J, Almehmadi F A. Journal of Building Engineering, 2022, 51, 104227.
93 Xu B, Xie X, Chen X N. Applied Thermal Engineering, 2022, 206, 118062.
94 Voller V R. Advances in Numerical Heat Transfer, 1997, 1(9), 341.
95 Wu L M, Liu Q X, Wang X L, et al. Materials Reports, 2021, 35(S1), 501(in Chinese).
吴丽梅, 刘庆欣, 王晓龙, 等. 材料导报, 2021, 35(S1), 501.
96 Feldman D B D, Hawes D, Ghanbari E. Solar Energy Materials, 1991, 22(2), 231.
97 Peippo K K P, Lund P D. Energy and Buildings, 1991, 17(4), 259.
98 Soares N, Costa J J, Gaspar A R, et al. Energy and Buildings, 2013, 59, 82.
99 Jiang Z, Rivero M E N, Anagnostopoulos A, et al. Powder Technology, 2021, 391, 544.
100 Fu S Y, Shen Z H, Yang Y Y, et al. New Chemical Materials, 2021, 49(11), 222(in Chinese).
伏舜宇, 沈仲华, 杨英英, 等. 化工新型材料, 2021, 49(11), 222.
101 Memon S A. Renewable & Sustainable Energy Reviews, 2014, 31, 870.
102 Peng F F, Liu Z F, Liang X. Materials Reports, 2016, 30(S1), 436(in Chinese).
彭飞飞, 刘子凡, 梁熙. 材料导报, 2016, 30(S1), 436.
103 Gong X, Wang C Y, Zhu Q Z. Chemical Industry and Engineering Progress, 2021, 40(10), 5554(in Chinese).
公雪, 王程遥, 朱群志. 化工进展, 2021, 40(10), 5554.
104 Yu S, Wang X, Wu D. Applied Energy, 2014, 114, 632.
105 Jiang X, Luo R, Peng F, et al. Applied Energy, 2015, 137, 731.
106 Liu Y C, Lou H F, Liu D Z, et al. Materials Reports, 2021, 35(2), 2157(in Chinese).
刘炎昌, 娄鸿飞, 刘东志, 等. 材料导报, 2021, 35(2), 2157.
107 Sun Z, Shi T, Wang Y, et al. Solar Energy Materials and Solar Cells, 2022, 236, 111539.
108 Zhang Z, Fang J, Xi L M. Materials Reports, 2019, 33(24), 4181(in Chinese).
张喆, 方健, 席丽敏. 材料导报, 2019, 33(24), 4181.
109 Zhao L, Wang Y, Wang G, et al. Chemical Industry and Engineering Progress, 2022, 41(5), 2566(in Chinese).
赵亮, 王岩, 王刚, 等. 化工进展, 2022, 41(5), 2566.
110 Wu F, Mo B Z, He L J, et al. Materials Reports, 2022, 36(14), 93(in Chinese).
吴凡, 莫丙忠, 何利娟, 等. 材料导报, 2022, 36(14), 93.
111 Zhang H, Xing F, Cui H Z, et al. Applied Energy, 2016, 170, 130.
112 Zhang X L, Chen X D, Han Z, et al. International Journal of Heat and Mass Transfer, 2016, 92, 490.
113 Chang H, Jin L H. Journal of New Materials for Electrochemical Systems, 2020, 23(3), 204.
114 Feng G, Liang D, Huang K, et al. Sustainable Cities and Society, 2019, 50, 101662.
115 Xu T H, Humire E N, Trevisan S, et al. Energy, 2022, 238, 121828.
116 Wu S, Li T X, Yan T, et al. CIESC Journal, 2015, 66(12), 5127(in Chinese).
仵斯, 李廷贤, 闫霆, 等. 化工学报, 2015, 66(12), 5127.
117 Hua J, Yuan C, Zhao X, et al. Energy Sources Part A-Recovery Utilization and Environmental Effects, 2019, 41(1), 86.
118 Qiu Q L. Journal of Functional Materials, 2020, 51(10), 10216(in Chinese).
邱庆龄. 功能材料, 2020, 51(10), 10216.
119 Wu S F, Yan T, Kuai Z H, et al. Materials Reports, 2021, 35(4), 4186(in Chinese).
吴韶飞, 闫霆, 蒯子函, 等. 材料导报, 2021, 35(4), 4186.
120 He L H, Wang H, Yang F, et al. Chemical Industry and Engineering Progress, 2018, 37(3), 1076(in Chinese).
何丽红, 王浩, 杨帆, 等. 化工进展, 2018, 37(3), 1076.
121 Ding Z, Chen Z P, Zhang K, et al. Polymeric Materials Science and Engineering, 2019, 35(1), 136(in Chinese).
丁泽, 陈昭朋, 张凯, 等. 高分子材料科学与工程, 2019, 35(1), 136.
122 Ren Q L Z, Ci D D J, Guo P. Highway Engineering, 2021, 46(1), 63(in Chinese).
仁乾龙珠, 次旦多杰, 郭鹏. 公路工程, 2021, 46(1), 63.
123 Kishore R A, Bianchi M V A, Booten C, et al. Applied Energy, 2021, 283, 116306.
124 Zhang W J, Wu W, Li S Z, et al. Chemical Industry and Engineering Progress, 2022, 41(2), 920(in Chinese).
张文杰, 吴畏, 李松泽, 等. 化工进展, 2022, 41(2), 920.
125 Zhao M Y, Zhang Y A, Tang B T. Fine Chemicals, 2022, 39(6), 1155(in Chinese).
赵梦阳, 张宇昂, 唐炳涛. 精细化工, 2022, 39(6), 1155.
126 Chen P, Jiang D H, Xu Y Z, et al. Applied Chemical Industry, 2022, 51(12), 3721(in Chinese).
陈璞, 蒋达华, 徐玉珍, 等. 应用化工, 2022, 51(12), 3721.
127 Yang H, Chen W H, Kong X F, et al. Journal of Central South University, 2019, 26(9), 2578.
128 Zhang W X, Sun Z G. Journal of Functional Materials, 2023, 54(3), 3106(in Chinese).
张万鑫, 孙志高. 功能材料, 2023, 54(3), 3106.
129 Li G, Ouyang T, Jiang C, et al. Acta Materiae Compositae Sinica, 2020, 37(5), 1130(in Chinese).
李果, 欧阳婷, 蒋朝, 等. 复合材料学报, 2020, 37(5), 1130.
130 Yan J S, Han X Y, Dang Z H, et al. Chemical Journal of Chinese Universities, 2022, 43(6), 326(in Chinese).
闫嘉森, 韩现英, 党兆涵, 等. 高等学校化学学报, 2022, 43(6), 326.
131 Yang Y, Wu W, Fu S, et al. Construction and Building Materials, 2020, 246, 118479.
132 Laaouatni A, Martaj N, Bennacer R, et al. Energy and Buildings, 2019, 187, 50.
133 Park B, Cheong C H, Park D Y, et al. Case Studies in Thermal Engineering, 2023, 41, 102681.
134 Zhao Q, Shi C, Yang L. Journal of Energy Storage, 2023, 61, 106773.
135 Cao V D, Pilehvar S, Salas-Bringas C, et al. Energy Conversion and Management, 2017, 133, 56.
136 Lu J, Qu M L, Tian S Q. Journal of Building Materials, 2020, 23(2), 341(in Chinese).
陆江, 瞿铭良, 田帅奇. 建筑材料学报, 2020, 23(2), 341.
137 Ren M, Wen X D, Gao X J, et al. Construction and Building Mate-rials, 2021, 273, 121714.
138 Li D, Yang R T, Arici M, et al. Applied Thermal Engineering, 2022, 210, 118374.
139 Ma Y X, Li D, Yang R T, et al. Energy Conversion and Management, 2022, 271, 116341.
140 Che-Pan M, Sima E, Avila-Hernandez A, et al. Energy and Buildings, 2023, 281, 112775.
141 Hu J, Yu X. Construction and Building Materials, 2020, 262, 120481.
142 Wang P C, Liu Z B, Zhang X Y, et al. Building and Environment, 2022, 222, 109436.
143 Yu J, Leng K, Wang F, et al. Sustainability, 2020, 12(22), 9315.
144 Liu C Y, Wu Y Y, Bian J, et al. Applied Energy, 2018, 212, 151.
145 Al-Yasiri Q, Szabo M. Journal of Building Engineering, 2021, 36, 102122.
146 Ghosh A. Journal of Cleaner Production, 2020, 276, 123343.
147 Shanmuganathan R, Sekar M, Praveenkumar T R, et al. International Journal of Energy Research, 2021, 45(12), 17279.
148 Hakami A, Srinivasan S S, Marildi H, et al. In: Proceedings of the Conference on Current Developments in Lens Design and Optical Engineering XXII, San Diego, CA, 2021, pp. 118140F.
149 Sun L L, Chen H B, Wang S H, et al. Surface Technology, 2021, 50(3), 255(in Chinese).
孙理理, 陈红波, 王树浩, 等. 表面技术, 2021, 50(3), 255.
150 Triano-Juarez J, Macias-Melo E V, Hernandez-Perez I, et al. Journal of Building Engineering, 2020, 32, 101648.
[1] 孙宗旭, 张焕芝, 荆锐, 吴博竞, 徐芬, 夏永鹏, 孙立贤. 相变复合纳米纤维的研究与应用[J]. 材料导报, 2023, 37(7): 21060061-8.
[2] 张东方, 梁威, 杨才千, 陈俊, 李敏, 许福, 徐利敏. 相变云砼石水泥基复合材料的制备及性能研究[J]. 材料导报, 2023, 37(23): 22060207-7.
[3] 曾关跃, 高专, 熊玉竹. 多壁碳纳米管负载银/微晶纤维素定型复合相变材料的制备及性能研究[J]. 材料导报, 2023, 37(23): 22040102-6.
[4] 朱丽华, 刘海林, 韩伟. 基于细观尺度的再生混凝土多相导热系数理论模型[J]. 材料导报, 2023, 37(12): 21110080-7.
[5] 胡帅帅, 许智鹏, 雷子萱, 陈双, 刘育红, 强军锋. 脂环族环氧-丙烯酸酯混杂光固化树脂的设计及性能研究[J]. 材料导报, 2023, 37(11): 21090171-8.
[6] 赵会阳, 王豪, 赵亮亮, 张炜楠, 王岩, 吴跃民, 于辉, 孙承月, 琚丹丹, 吴宜勇. 空间太阳电池柔性封装材料与技术研究进展[J]. 材料导报, 2022, 36(22): 22030104-11.
[7] 吉静茹, 许智鹏, 强军锋, 刘育红. 有机硅改性环氧树脂薄膜封装材料的制备及性能研究[J]. 材料导报, 2022, 36(11): 20120032-9.
[8] 倪烨, 徐浩, 孟腾飞, 袁燕, 王君, 张玉涛. 基于硅基WLP封装的深孔刻蚀工艺研究[J]. 材料导报, 2021, 35(z2): 110-114.
[9] 吴丽梅, 刘庆欣, 王晓龙, 唐宁, 高丽丽, 胡玲. 相变储能材料研究进展[J]. 材料导报, 2021, 35(Z1): 501-506.
[10] 李木兰, 张亮, 姜楠, 孙磊, 熊明月. 纳米颗粒对无铅钎料改性的研究进展[J]. 材料导报, 2021, 35(5): 5130-5139.
[11] 刘璇, 徐红艳, 李红, 徐菊, Hodúlová Erika, Kovaříková Ingrid. 应用于功率芯片封装的瞬态液相扩散连接材料与接头可靠性研究进展[J]. 材料导报, 2021, 35(19): 19116-19124.
[12] 许智鹏, 吉静茹, 刘育红, 强军锋. UV固化脂环族环氧树脂体系的设计及其响应面优化[J]. 材料导报, 2021, 35(14): 14190-14197.
[13] 王涛, 李金辉, 赵雅绪, 朱良, 张少霞, 张国平, 孙蓉, 汪正平. 光敏聚苯并噁唑的研究现状与发展趋势[J]. 材料导报, 2020, 34(19): 19183-19189.
[14] 杨金龙, 董长城, 骆健. 新型功率模块封装中纳米银低温烧结技术的研究进展[J]. 材料导报, 2019, 33(Z2): 360-364.
[15] 周超, 李得天, 周晖, 张凯锋, 曹生珠. MEMS器件真空封装用非蒸散型吸气剂薄膜研究概述[J]. 材料导报, 2019, 33(3): 438-443.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed