Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22070054-5    https://doi.org/10.11896/cldb.22070054
  无机非金属及其复合材料 |
放电等离子烧结Bi、Ce掺杂钇铁石榴石陶瓷的微观结构与磁性能
叶登建, 代波*
西南科技大学材料科学与工程学院,环境友好能源材料国家重点实验室,四川 绵阳 621010
Microstructure and Magnetic Properties of Bi, Ce-YIG Ceramic Sintered by Spark Plasma Sintering
YE Dengjian, DAI Bo*
State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
下载:  全 文 ( PDF ) ( 9998KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钇铁石榴石(Y3Fe5O12,YIG)是一种立方晶体结构的软磁铁氧体材料。YIG具有法拉第效应、低的铁磁共振线宽,在微波磁光领域具有广阔的应用前景。采用球磨法,通过预烧成功制备Y2.6-xBi0.4CexFe5O12 (x=0.1,0.2)粉末,再利用放电等离子烧结(SPS)将其在较低温度下制备成陶瓷。采用X射线衍射仪对陶瓷表面和内层进行了物相分析,采用扫描电子显微镜对粉体和陶瓷形貌进行观察,采用振动样品磁强计对样品进行了静态磁性能测试。实验结果表明,由于Bi元素的掺入,预烧温度降低到1 050 ℃。利用放电等离子烧结方法,在1 050 ℃、60 MPa、保温4 min条件下制备出孔洞少、表观密度为5.358 5 g/cm3和5.446 9 g/cm3的Bi,Ce-YIG陶瓷,实现了Bi,Ce-YIG陶瓷的低温快速烧结。Ce的掺入提高了Y2.6-xBi0.4CexFe5O12 (x=0.1,0.2)粉末陶瓷的饱和磁化强度(分别为23.01 emu/g、25.96 emu/g),有利于磁光器件的小型化。Bi,Ce-YIG陶瓷的铁磁共振线宽最低为140.5 Oe,有利于器件在微波应用中的低损耗。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶登建
代波
关键词:  钇铁石榴石  陶瓷  放电等离子烧结  低温快速烧结  静态磁性能    
Abstract: Yttrium iron garnet (Y3Fe5O12, YIG) is a soft ferrite material with a cubic crystal structure. YIG has the Faraday effect and low ferromagnetic resonance linewidth, so it has broad application prospects in microwave magneto-optics. In this paper, Y2.6-xBi0.4CexFe5O12 (x=0.1, 0.2) powder was successfully prepared by ball milling and pre-sintering, and then prepared into ceramics at lower temperature by spark plasma sintering (SPS). The phase analysis of the ceramic surface and inner layer was carried out by X-ray diffractometer, the morphology of powder and ceramic was observed by scanning electron microscope, and the static magnetic properties of the samples were tested by vibrating sample magnetometer. The experimental results show that the pre-sintering temperature is reduced to 1 050 ℃ due to the incorporation of Bi element. Using spark plasma sintering method, Bi, Ce-YIG ceramics with less pores and apparent densities of 5.358 5 g/cm3 and 5.446 9 g/cm3 were prepared at 1 050 ℃, 60 MPa, and holding time for 4 min. This paper realizes low temperature rapid sintering of YIG ceramics. The incorporation of Ce increases the saturation magnetization of Y2.6-xBi0.4CexFe5O12 (x=0.1, 0.2) powder ceramics. The saturation magnetization of the powder is 23.01 emu/g and 25.96 emu/g, respectively, which is beneficial to the miniaturization of magneto-optical devices. The minimum ferromagnetic resonance linewidth of Bi,Ce-YIG ceramics is 140.5 Oe, which is beneficial to the low loss of the device in microwave applications.
Key words:  yttrium iron garnet    ceramic    spark plasma sintering    low temperature rapid sintering    static magnetic property
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  O737  
基金资助: 中国电子科技集团公司第九研究所揭榜挂帅项目(2022SK-007);西南科技大学环境友好能源材料国家重点实验室(21fksy27)
通讯作者:  *代波,西南科技大学材料与化学学院教授、博士研究生导师。2005年7月博士毕业于中国科学院物理研究所,2007—2008年英国巴斯大学博士后,2015年美国东北大学作访问学者。长期从事电磁功能材料与器件研究,在Appl.Phys.Lett.等期刊发表SCI收录论文60余篇,授权国家发明专利6项。Daibo@swust.edu.cn   
作者简介:  叶登建,2017年6月在成都理工大学获得工学学士学位,现为西南科技大学材料与化学学院硕士研究生,在代波教授的指导下进行研究,主要研究领域为磁性陶瓷。
引用本文:    
叶登建, 代波. 放电等离子烧结Bi、Ce掺杂钇铁石榴石陶瓷的微观结构与磁性能[J]. 材料导报, 2024, 38(4): 22070054-5.
YE Dengjian, DAI Bo. Microstructure and Magnetic Properties of Bi, Ce-YIG Ceramic Sintered by Spark Plasma Sintering. Materials Reports, 2024, 38(4): 22070054-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070054  或          http://www.mater-rep.com/CN/Y2024/V38/I4/22070054
1 Garskaite E, Gibson K, Leleckaitea A, et al. Journal of Chemical Physics, 2006, 323(1-2), 204.
2 Mergen A, Qureshi A. Journal of Alloys & Compounds, 2009, 478(1-2), 741.
3 Hauser C, Richter T, Homonnay N, et al. Scientific Reports, 2016, 19(6), 1.
4 Nakano T, Yuri H, Kihara U, et al. IEEE Transactions on Magnetics, 1984, 20(5), 986.
5 Jin W Z. Growth process and properties of yttrium iron garnet crystal. Master’s Thesis, Changchun University of Science and Technology, China, 2019(in Chinese).
金维召. 钇铁石榴石晶体生长工艺与性能研究. 硕士学位论文, 长春理工大学, 2019.
6 IkesueA, Aung Y. Journal of the American Ceramic Society, 2018, 101(11), 5120.
7 Yang Y, Li X Y, Liu Z Y, et al. Magnetochemistry, 2021, 7(5), 56.
8 Ali W F F W, Abdullah N S, Ain M F, et al. Materials Science Forum, 2016, 840, 276.
9 Wan F F W A, Othman M, Ain M F, et al. Journal of the European Ceramic Society, 2013, 33(7), 1317.
10 Gaudisson T, Acevedo U, Nowak S, et al. Journal of the American Ceramic Society, 2013, 96(10), 3094.
11 Fernandez-Garcia L, Suarez M, Menendez J L, et al. Journal of Alloys and Compounds, 2010, 502(1), 132.
12 Zhang T. Structure and properties of PLZT and YIG ceramics prepared by spark plasma sintering. Master’s Thesis, Zhejiang University, China, 2013(in Chinese).
张涛. 放电等离子烧结对PLZT和YIG陶瓷结构与性能的影响. 硕士学位论文, 浙江大学, 2013.
13 Mao T C, Chen J C. Journal of Magnetism & Magnetic Materials, 2006, 302(1), 74.
14 Ikesue A, Aung Y L, Yasuhara R, et al. Journal of the European Ceramic Society, 2020, 40(15), 6073.
15 Aung Y L, Ikesue A, Watanabe T, et al. Journal of Alloys and Compounds, 2019, 811(30), 152059.
16 Ning J. Zhang H W, et al. Journal of the American Ceramic Society, 2019, 102(3), 1180.
17 Dastjerdi O D, Shokrollahi H, Yang H. Ceramics International, 2020, 46(3), 2709.
18 Wu H, Huang F, Xu T, et al. Journal of Applied Physics, 2015, 117(14), 144101.
19 Caland J P, Medrano C P C, Caytuero A, et al. Journal of Alloys and Compounds, 2020, 849(30), 156657.
20 Peña-garcia R, Guerra Y, Santos F, et al. Journal of Magnetism and Magnetic Materials, 2019, 492(15), 165650.
21 Wu H, Huang F Z, Ti R X, et al. Journal of Alloys and Compounds, 2020, 861(25), 157996.
22 Fu Y P, Lin C H, Tay K W, et al. Journal of Electroceramics, 2008, 21(1-4), 677.
23 Han Z Q, Liao Y, Feng T. Magnetic Materials and Devices, 2009, 40(5), 4(in Chinese).
韩志全, 廖杨, 冯涛. 磁性材料及器件, 2009, 40(5), 4.
24 Ning J, Zhang H W, Jie L, et al. Journal of Alloys and Compounds, 2017, 695(25), 931.
[1] 张昊, 黄宗玥, 张妍彬, 魏剑. (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能[J]. 材料导报, 2024, 38(3): 22050232-6.
[2] 张倩玮, 陈意高, 崔红, 吴小军. SiC-ZrC复相超高温陶瓷改性C/C复合材料的研究进展[J]. 材料导报, 2024, 38(3): 22060154-10.
[3] 马昕, 刘海韬, 姜如, 孙逊. He-Hutchinson模型在连续陶瓷纤维增韧陶瓷基复合材料研究中的应用[J]. 材料导报, 2024, 38(3): 22100252-7.
[4] 钱郑宇, 严冬, 恽迪. 核燃料裂变气体行为研究进展[J]. 材料导报, 2024, 38(2): 22090311-10.
[5] 陈恩光, 苏新清, 薛松柏, 陈旭东, 傅仁利, 张笑天, 程波, 王长虹, 王明伟. Ag-CuO-NiO-LiAlSiO4复合钎料空气反应钎焊GH3128/Al2O3接头组织及性能[J]. 材料导报, 2024, 38(2): 22090003-6.
[6] 周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
[7] 刘发付, 高闯, 牟晓明, 张丛, 郭在在, 郭建斌, 曹剑武, 林广庆. 预烧结升温速率与HIP保温时间对AlON透明陶瓷透光率影响的研究[J]. 材料导报, 2023, 37(S1): 23030085-5.
[8] 彭启清, 刘明, 黄艳斐, 马国政, 郭伟玲, 王海斗. 热喷涂陶瓷-树脂复合涂层的研究现状[J]. 材料导报, 2023, 37(9): 21100184-12.
[9] 刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
[10] 赵云松, 张迈, 戴建伟, 郭会明, 孙志军, 郭媛媛, 张剑, 花银群, 霍坤, 戴峰泽. 航空发动机涡轮叶片热障涂层研究进展[J]. 材料导报, 2023, 37(6): 21040168-7.
[11] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[12] 章国涛, 高艳, 刘书利, 孟德喜, 高娜燕, 郑勇. 低介电损耗Ca1-xSrxMgSi2O6微波介质陶瓷的结构和介电性能[J]. 材料导报, 2023, 37(4): 21080295-5.
[13] 周振豪, 姜勇刚, 冯军宗, 李良军, 冯坚. 直写成型制备多孔陶瓷技术研究进展[J]. 材料导报, 2023, 37(4): 20120004-7.
[14] 万林林, 周启明, 邓朝晖. 工程陶瓷磨削过程的声发射在线监测研究进展[J]. 材料导报, 2023, 37(4): 21050196-11.
[15] 薛云嘉, 刘家臣. 柔性纤维毡的制备及弹性与隔热性能研究[J]. 材料导报, 2023, 37(3): 21030042-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed