Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22040272-6    https://doi.org/10.11896/cldb.22040272
  无机非金属及其复合材料 |
ZnIn2S4基光催化剂的制备及改性研究进展
李冠琼1,2, 梁海欧1,2, 李春萍1,2, 白杰1,2,*
1 内蒙古工业大学化工学院,呼和浩特 010051
2 内蒙古工业催化重点实验室,呼和浩特 010051
Research Progress on Preparation and Modification of ZnIn2S4-based Photocatalyst
LI Guanqiong1,2, LIANG Haiou1,2, LI Chunping1,2, BAI Jie1,2,*
1 Collage of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2 Inner Mongolia Key Laboratory of Industrial Catalysis, Hohhot 010051, China
下载:  全 文 ( PDF ) ( 9094KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,硫锌铟(ZnIn2S4)作为层状结构的三元金属硫化物,是一种典型的可见光响应光催化剂,由于其无毒,易于合成,具有可调的带隙、较好的物理化学稳定性以及优异的光催化活性等一系列优势,一度被应用于光催化的不同领域。本文着眼于ZnIn2S4的晶体结构和生长机理,综述了ZnIn2S4常用的制备工艺。此外,基于ZnIn2S4存在的弊端,总结了提高ZnIn2S4光催化性能的各种调控策略,包括形貌和结构工程、空位工程、掺杂工程以及半导体异质结的构建,并深入分析了不同调控方式对ZnIn2S4光催化性能增强的内在原因。最后,提出ZnIn2S4基光催化剂目前面临的挑战和未来的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李冠琼
梁海欧
李春萍
白杰
关键词:  ZnIn2S4  制备工艺  改性策略  光催化    
Abstract: In recent years, as the ternary metal sulfide with the layered structure, sulfur zinc indium (ZnIn2S4) is a typical visible light responsive photocatalyst. Due to a series of advantages such as non-toxic, easy synthesis, adjustable band gap, good physicochemical stability and good photocatalytic activity, it has been used in different fields of photocatalysis. This paper focuses on the crystal structure and growth mechanism of ZnIn2S4, and summarizes the common preparation processes of ZnIn2S4. In addition, based on the disadvantages of ZnIn2S4, various modification strategies to improve the photocatalytic performance of ZnIn2S4 are also summarized, including morphology and structure engineering, vacancy engineering, doping engineering and semiconductor heterojunction construction. And intrinsic reasons for the enhancement photocatalytic performance of ZnIn2S4 by different modification methods are analyzed deeply. Finally, present challenges and future application prospects of ZnIn2S4 based photocatalyst are proposed.
Key words:  ZnIn2S4    preparation methods    modification strategy    photocatalytic
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  O643  
基金资助: 国家自然科学基金(51772158)
通讯作者:  *白杰,内蒙古工业大学化工学院教授、博士研究生导师。2003年7月本科毕业于内蒙古师范大学化学系,2008年7月在吉林大学化学学院有机合成专业,获得博士学位。目前主要从事碳纤维基纳米复合催化剂的制备与催化性能研究;分子筛基复合催化剂的制备研究;一维功能纳米材料的制备与性能研究;可见光响应型纳米复合光催化材料的开发。先后公开发表研究论文40余篇,包括Journal of Catalysis、Inorganic Chemistry Frontiers、Organic Chemistry Frontiers、Chemical Engineering Journal等。baijie@imut.edu.cn   
作者简介:  李冠琼,2020年毕业于内蒙古工业大学,获得工学硕士学位。现为内蒙古工业大学化工学院在读博士研究生,在白杰教授的指导下进行研究。目前主要研究领域为光催化分解水制氢材料。
引用本文:    
李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
LI Guanqiong, LIANG Haiou, LI Chunping, BAI Jie. Research Progress on Preparation and Modification of ZnIn2S4-based Photocatalyst. Materials Reports, 2024, 38(3): 22040272-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040272  或          http://www.mater-rep.com/CN/Y2024/V38/I3/22040272
1 Wang J J, Lin S, Tian N, et al. Advanced Functional Materials, 2021, 31, 2008008.
2 Gao H H, Mo Z L, Niu X H, et al. New Chemical Materials, 2017, 45(8), 41 (in Chinese).
高虎虎, 莫尊理, 牛小慧, 等. 化工新型材料, 2017, 45(8), 41.
3 Han X, Wang L L, Wang L, et al. Journal of the Chinese Ceramic Society, 2020, 48(7), 1097 (in Chinese).
韩煦, 王雷磊, 王磊, 等. 硅酸盐学报, 2020, 48(7), 1097.
4 Lei Z, You W, Liu M, et al. Chemical Communications, 2003, 3, 2142.
5 Li Y F, Zhou M H, Cheng B, et al. Journal of Materials Science & Technology, 2021, 56, 1.
6 Wang J, Sun S, Zhou R, et al. Journal of Materials Science & Technology, 2021, 78, 1.
7 Zhu Q H, Xing M Y, Zhang J L, Chemical Industry and Engineering Progress, 2021, 40(9), 4774 (in Chinese).
朱乔虹, 邢明阳, 张金龙, 化工进展, 2021, 40(9), 4774.
8 Wang C Z, Chen Z, Jin H B, et al. Journal of Materials Chemistry A, 2014, 2, 17820.
9 Yadav G, Ahmaruzzaman M, Inorg. Chemical Communications, 2022, 138, 109288.
10 Cheng X W, Cheng H, Zhang M Y, et al. New Chemical Materials, 2020, 48(1), 35 (in Chinese).
陈小卫, 陈虎, 张铭烨, 等. 化工新型材料, 2020, 48(1), 35.
11 Shen S H, Zhao L, Guo L J, et al. International Journal of Hydrogen Energy, 2008, 33, 4501.
12 Chen Y J, Hu S W, Liu W J, et al. Dalton Transactions, 2011, 40, 2607.
13 Gou X L, Cheng F Y, Shi Y H, et al. Journal of the American Chemical Society, 2006, 128, 7222.
14 Wang S B, Guan B Y, Lou X W D, Journal of the American Chemical Society, 2018, 140(15), 5037.
15 Wang S B, Guan B Y, Wang X, et al. Journal of the American Chemical Society, 2018, 140(45), 15145.
16 Cao X, Xu H, Chen S S, et al. Journal of Hubei Polytechnic University, 2018, 34(6), 20 (in Chinese).
曹鑫, 徐辉, 陈顺生, 等. 湖北理工学院学报, 2018, 34(6), 20.
17 Si M Y, Zhang J, He Y Y, et al. Green Chemistry, 2018, 20, 3414.
18 Zhou D X, Xue X D, Wang X, et al. Applied Catalysis B:Environmental, 2022, 310, 121337.
19 Hu X H, Yu J. C, Gong J M, et al. Crystal Growth & Design, 2007, 7, 2444.
20 Mora S, Paorici C, Romeo N, Journal of Applied Physics, 1971, 42, 2061.
21 Yang W J, Liu B D, Fang T, et al. Nanoscale, 2016, 8, 18197.
22 Li M T, Su J Z, Guo L J, et al. International Journal of Hydrogen Energy, 2008, 33, 2891.
23 Kempken B, Dzhagan V, Zahn D R T, et al. RSC Advances, 2015, 5, 89577.
24 Carevic M, Savic T, Abazovic A, et al. Materials Research Bulletin, 2017, 87, 140.
25 Liao C, Li J, Zhang Y, et al. Materials Letters, 2019, 248, 52.
26 Li X L, Wang X J, Zhao J, et al. Materials Reports A: Review Papers, 2018, 32(4), 1057 (in Chinese).
李旭力, 王晓静, 赵君, 等. 材料导报A:综述篇, 2018, 32(4), 1057.
27 Dan M, Cai Q, Xiang J L, et al. Progress in Chemistry, 2020, 32(7), 917 (in Chinese).
淡猛, 蔡晴, 向将来, 等. 化学进展, 2020, 32(7), 917.
28 Du C, Yan B, Lin Z Y, et al. Journal of Materials Chemistry A, 2020, 8, 207.
29 Du C, Zhang Q, Lin Z Y, et al. Applied Catalysis B:Environmental, 2019, 248, 193.
30 Xu B, He P L, Liu H L, et al. Angewandte Chemie International Edition, 2014, 53, 2339.
31 Liu Q, Zhou Y, Kou J H, et al. Journal of the American Chemical Society, 2010, 132(41), 14385.
32 Feng X J, Shankar K, Varghese O K, et al. Nano Letters, 2008, 8(11), 3781.
33 Kale B B, Baeg J O, Lee S M, et al. Advanced Functional Materials, 2006, 16(10), 1349.
34 Shi X W, Mao L, Yang P, et al. Applied Catalysis B:Environmental, 2020, 265, 118616.
35 Shen S, Zhao L, Guo L, Journal of Physics and Chemistry of Solids, 2008, 69(10), 2426.
36 Tu X L, Lu J, Li M, et al. Nanoscale, 2018, 10, 4735.
37 Ding S P, Liu X F, Shi Y Q, et al. ACS Applied Materials & Interfaces, 2018, 10, 17911.
38 Wang M, Xie Y H, You M Y, et al. Materials Reports, 2016, 30(28), 248 (in Chinese).
王敏, 谢元华, 由美雁等. 材料导报, 2016, 30(28), 248.
39 Gao B, Liu L F, Liu J D, et al. Applied Catalysis B:Environmental, 2013, 129, 89.
40 Xing F S, Liu Q W, Huang C J, Solar RRL, 2019, 38, 1900483.
41 Shi X W, Mao L, Dai C, et al. Journal of Materials Chemistry A, 2020, 8, 13376.
42 Wang P F, Shen Z R, Xia Y G, et al. Advanced Functional Materials, 2019, 29, 1807013.
43 Asahi R, Morikawa T, Ohwaki T, et al. Science, 2001, 293, 269.
44 Yang W L, Zhang L, Xie J F, et al. Angewandte Chemie International Edition, 2016, 55, 6716.
45 Wang X W, Chen J F, Li Q Y, et al. Chemistry-A European Journal, 2021, 27, 3786.
46 Liu L Z, Huang H W, Chen F, et al. Science Bulletin, 2020, 65, 934.
47 Zhang S Q, Liu X, Liu C B, et al. ACS Nano, 2018, 12, 751.
48 Chhowalla M, Shin H S, Eda G, et al. Nature Chemistry, 2013, 5, 263.
49 Wang Y, Chen D, Qin L, et al. Physical Chemistry Chemical Physics, 2019, 21, 25484.
50 He Y Q, Rao H, Song K, et al. Advanced Functional Materials, 2019, 29, 1905153.
51 Chen S S, Yu J G, Li S Z, et al. Journal of Functional Materials, 2017, 2(48), 2122 (in Chinese).
陈顺生, 余家国, 李少珍, 等. 功能材料, 2017, 2(48), 2122.
52 Liu D B, Su X D, Zhao H L, Materials Review, 2019, 33(34), 13 (in Chinese).
刘大波, 苏向东, 赵宏龙, 材料导报, 2019, 33(34), 13.
53 Guang Y, Chen D M, Ding H, et al. Applied Catalysis B:Environmental, 2017, 219, 611.
54 Zheng J F, Zhu S L, Nie L H, Materials Review, 2021, 35(Z1), 33 (in Chinese).
郑健飞, 朱思龙, 聂龙辉, 材料导报, 2021, 35(Z1), 33.
55 Gao Z Q, Chen K Y, Wang L, et al. Applied Catalysis B:Environmental, 2020, 268, 118462.
56 Chen W, Liu T Y, Huang T, et al. Nanoscale, 2016, 8(6), 3711.
57 Yang G, Ding H, Chen D M, et al. Applied Catalysis B:Environmental, 2018, 234, 260.
58 Zuo G, Wang Y, Teo W L, et al. Angewandte Chemie International Edition, 2020, 59(28), 11287.
59 Wang X C, Maeda K, Thomas A, et al. Nature Materials, 2009, 8, 76.
60 Chen K H, Wang X W, Li Q Y, et al. Chemical Engineering Journal, 2021, 418, 129476.
61 Li X L, Wang X J, Zhu J Y, et al. Chemical Engineering Journal, 2018, 353, 15.
62 Dai D S, Wang L, Xiao N, et al. Applied Catalysis B:Environmental, 2018, 233, 194.
63 Wang Y M, Zhang T T, Wei T T, et al. New Journal of Chemistry, 2021, 45, 11261.
64 Shen R C, Xie J, Lu X Y, et al. ACS Sustainable Chemistry & Enginee-ring, 2018, 6, 4026.
65 Li C Q, Du X, Jiang S, et al. Advanced Science, 2022, 9, 2201773.
66 Guan S D, Fu X L, Zhang Y, et al. Chemical Science, 2018, 9, 1574.
67 Huang L S, Zhang L X, Bao D Y, et al. Applied Surface Science, 2020, 526, 146742.
68 Zhang S J, Duan S X, Chen G L, et al. Chinese Journal of Catalysis, 2021, 42, 193.
69 Yang Y, Zheng X Z, Liu J F, et al. Inorganic Chemistry Frontiers, 2022, 9, 1943.
70 Wu S M, Pang H, Zhou W, et al. Nanoscale, 2020, 16, 8693.
[1] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[2] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[3] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[4] 王祺, 冯鑫浩, 刘新有. 古旧木材加固保护研究进展[J]. 材料导报, 2024, 38(1): 22070091-19.
[5] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[6] 张伟, 杨旭, 陈晓通, 任军强, 卢学峰. 纳米结构金属材料制备工艺及强化稳定方式研究进展[J]. 材料导报, 2023, 37(S1): 23010123-16.
[7] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[8] 郑会勤, 樊耀亭. 基于两个[2Fe2S]化合物的光催化分解水产氢性能及可能的机理[J]. 材料导报, 2023, 37(9): 21050052-8.
[9] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[10] 赵艳艳, 范敬煜, 魏景, 施欢贤. 碳量子点/Bi2WO6复合材料高效光催化降解RhB和杀灭大肠杆菌及其催化活性增强机理研究[J]. 材料导报, 2023, 37(5): 21060126-8.
[11] 张理元, 阳金菊, 尤佳. 以PVP为软模板构建的层状介孔TiO2及其光催化性能[J]. 材料导报, 2023, 37(4): 21080004-6.
[12] 石现兵, 王涛, 吕明泽, 赵晋, 韩振邦. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 21060080-6.
[13] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[14] 曹一达, 刘成宝, 陈丰, 钱君超, 许小静, 孟宪荣, 陈志刚. CeO2/BiOI/g-C3N4三相复合材料的制备及可见光催化降解RhB性能研究[J]. 材料导报, 2023, 37(3): 21070275-7.
[15] 符明君, 张勇, 张耿飞, 王凯, 贾致远, 王娜. 钼及钼合金改性硅化物高温抗氧化涂层研究现状[J]. 材料导报, 2023, 37(3): 21030219-8.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed