Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 122-128    https://doi.org/10.11896/j.issn.1005-023X.2017.019.017
  新材料新技术 |
QLED研究及显示应用进展
宋志成1, 刘代明2,3, 刘卫东1, 王庆康2
1 海信集团多媒体研发中心显示研发部,青岛266000;
2 上海交通大学薄膜与微细技术教育部重点实验室,上海200240;
3 山东科技大学材料科学与工程学院纳米工程所,青岛266590
Review on QLED and Its Applications in Display
SONG Zhicheng1, LIU Daiming2,3, LIU Weidong1, WANG Qingkang2
1 Multimedia R&D Center, Hisense Electric Appliance Co., Ltd, Qingdao 266000;
2 Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University,Shanghai 200240;
3 Institute of Nano Engineering,School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590
下载:  全 文 ( PDF ) ( 1739KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 胶体量子点由于具有高的量子效率、窄的激发光谱、独特的尺寸依赖激发光谱和良好的溶液加工兼容性等优异特性,在高色彩质量显示方面有着巨大的应用潜力。随着量子效率提升及电致发光原理、激子衰减机制、器件结构优化和电荷有效输运等研究的持续深入,QLED的发光效率从小于0.01%提升到20.5%,已接近商业化OLED的效率。从显示技术的长远发展来看,量子点电致发光显示将超越光致发光的量子点增亮膜和量子点彩色滤光片,有望成为下一代主流显示技术。根据“材料—器件—显示”的主线,依次对量子点材料发光特性和材料类别,以及发光器件的结构类型、发光机制和效率提升等方面展开概述,最后简要介绍了量子点电致发光显示的相关技术挑战和发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋志成
刘代明
刘卫东
王庆康
关键词:  量子点  电致发光  外量子效率  显示    
Abstract: Due to high quantum efficiency, narrow spectral emission, unique size-tunable spectra and excellent solution-processcompatibility, quantum dots have great potential in high-color-quality display. With deep exploration on mechanisms of excitation and attenuation, improvements of quantum yields, structural optimization of devices and effective transportation of charge carrier, external quantum efficiency of quantum-dot electroluminescent devices have been increased from less than 0.01% to about 20.5%, which is very close to the value of commercial OLEDs. In the long term,quantum-dot electroluminescent technology will transcend the photoluminescence brightness enhancement film and color filter products, and it is expected to become the next-generation display technology. Along with the link of “materials to device to panel”, this review first outlines the properties and categories of quantum dots. Next, the structures, types,mechanisms of devices are summarized. The key scientific and technological challenges of commercialization of quantum-dot display are finally identified.
Key words:  quantum dots    electroluminescent    external quantum efficiency    display
               出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  TN312+.8  
作者简介:  宋志成:男,1981年生,硕士,工程师,研究方向为量子点显示技术 E-mail:songzhicheng@hisense.com 刘代明:通讯作者,男,1986年生,博士,主要从事微纳米光电器件及量子点显示技术的研究 E-mail:daiming1205@sjtu.edu.cn
引用本文:    
宋志成, 刘代明, 刘卫东, 王庆康. QLED研究及显示应用进展[J]. 《材料导报》期刊社, 2017, 31(19): 122-128.
SONG Zhicheng, LIU Daiming, LIU Weidong, WANG Qingkang. Review on QLED and Its Applications in Display. Materials Reports, 2017, 31(19): 122-128.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.017  或          http://www.mater-rep.com/CN/Y2017/V31/I19/122
1 Hildebrandt N, Spillmann C M, Algar W R, et al. Energy transfer with semiconductor quantum dot bioconjugates: A versatile platform for biosensing, energy harvesting, and other developing applications[J]. Chem Rev,2017,117(2):536.
2 Chen O, Zhao J, Chauhan V P, et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking[J]. Nat Mater,2013,12(5):445.
3 Rosenthal S J, Mcbride J, et al. Synthesis, surface studies, composition andstructural characterization of CdSe, core/shell, and biolo-gically active nanocrystals[J]. Surf Sci Rep,2007,62(4):111.
4 Song J, Li J, Li X, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J]. Adv Mater,2015,27(44):7162.
5 Pan J, Quan L N, Zhao Y, et al. Highly efficient perovskite-quantum-dot light-dmitting diodes by surface engineering[J]. Adv Mater,2016,28(39):8718.
6 Yang X Y , Zhao D W, Swee Leck K, et al. Full visible range cove-ring InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes[J]. Adv Mater,2012,24:4180.
7 Kim B H, Cho C H, Park S J, et al. Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency[J]. Appl Phys Lett,2006,89(6):11.
8 Shen H, Lin Q, Wang H, et al. Efficient and bright colloidal quantum dot light-emitting diodes via controlling the shell thickness of quantum dots[J]. ACS Appl Mater Interfaces,2013,5:12011.
9 Lim J, et al. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP @ ZnSeS quantum dots[J]. ACS Nano,2013,7(10):9019.
10 Jang E, Jun S, Jang H, et al. White-light-emitting diodes with quantum dot color converters for display backlights[J]. Adv Mater,2010,22(28):3076.
11 Liu S, Liu W, Ji W, et al. Top-emitting quantum dots light-emitting devices employing microcontact printing with electricfield-indepen-dent emission[J]. Sci Rep,2016,6:22530.
12 Kim H M, Jang J. High-efficiency inverted quantum-dot light emitting diodes for display[J]. SID Symposium Digest of Technical Papers,2014,45(1):67.
13 Dong Y, Caruge J M, Zhou Z, et al. Ultra-bright, highly efficient,low roll-off inverted quantum-dot light emitting devices (QLEDs)[J]. SID Symposium Digest of Technical Papers,2015,46:270.
14 Wood V, Bulovic' V. Colloidal quantum dot light-emitting devices[J]. Nano Rev,2010,1:1.
15 Supran G J, Shirasaki Y, Song K W, et al. QLEDs for displays and solid-state lighting[J]. MRS Bull,2013,38(9):703.
16 Wood V, Panzer M J, Caruge J M, et al. Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture[J]. Nano Lett,2010,10(1):24.
17 Anikeeva P, Madigan C, Halpert J, et al. Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots[J]. Phys Rev B,2008,78(8):1.
18 Bae W K, Park Y S, Lim J, et al. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes[J]. Nat Commun,2013,4:2661.
19 Shirasaki Y, Supran G J, et al. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nat Photon,2013,7(1):13.
20 Shen H, Cao W, Shewmon N T, et al. High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes[J]. Nano Lett,2015,15(2):1211.
21 Lee K H, Lee J H, Song W S, et al. Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices[J]. ACS Nano,2013,7(8):7295.
22 Son D I, Kim H H, Hwang D K, et al. Inverted CdSe-ZnS quantum dots light-emitting diode using low-work function organic material polyethylenimine ethoxylated[J].J Mater Chem C,2014,2(3):510.
23 Bai L, Yang X, Ang C Y, et al. A quinoxaline based N-heteroacene interfacial layer for efficient hole-injection in quantum dot light-emitting diodes[J]. Nanoscale,2015,7:11531.
24 Leck K S, Divayana Y, Zhao D, et al. Quantum dot light-emitting diode with quantum dots inside the hole transporting layers[J]. ACS Appl Mater Interfaces,2013,5(14):6535.
25 Dai X, Zhang Z, Jin Y, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots[J]. Nature,2014,515(7525):96.
26 Mueller A H, Petruska M A, Achermann M, et al. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers[J]. Nano Lett,2005,5:1039.
27 Caruge J M, Halpert J E, Wood V, et al. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers[J]. Nat Photon,2008,2(4):247.
28 Kwak J, Bae W K, Lee D, et al. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure[J]. Nano Lett,2012,12(5):2362.
29 Wood V, Panzer M J, Halpert J E, et al. Selection of metal oxide charge transport layers for colloidal quantum dot LEDs[J]. ACS Nano,2009,3(11):3581.
30 Cho K S, Lee E K, et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes[J]. Nat Photon,2009,3(6):341.
31 Mashford B, Stevenson M, Popovic Z, et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection[J]. Nat Photon,2013,7:407.
32 Sun L, Choi J J, Stachnik D, et al. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control[J]. Nat Nanotechnol,2012,7(6):369.
33 Zorn M, Bae W K, Kwak J, et al. Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting eevices[J]. ACS Nano,2009,3(5):1063.
34 Castan A, Kim H M, Jang J. All-solution-processed inverted quantum-dot light-emitting diodes[J]. ACS Appl Mater Interfaces,2014,6(4):2508.
35 Hofmann S, Thomschke M, Leo K. Top-emitting organic light-emitting diodes[J]. Opt Express,2011,19:1250.
36 Yang Y, Shu-Fen C, Jun X, et al. Light out-coupling process in organic light emitting device[J]. Acta Phys Sin,2011,60(4):1.
37 Busch K, von Freymann G, Linden S, et al. Periodic nanostructures for photonics[J]. Phys Rep,2007,444(3-6):101.
38 Lv H, Shen H, Jiang Y, et al. Porous-pyramids structured silicon surface with low reflectance over a broad band by electrochemical etching[J]. Appl Surf Sci,2012,258:5451.
39 Shen X, Wang Q, et al. Performance enhancement in a-Si∶H/μc-Si∶H tandem solar cells with periodic microstructured surfaces[J]. Opt Lett,2015,40(7):1290.
40 Lee W, Park S. Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures[J]. Chem Rev,2014,114:7487.
41 Parker A R, Townley H E. Biomimetics of photonic nanostructures[J]. Nat Nanotechnol,2007,2(6):347.
42 Liu D, Wang Q, Shen W, et al. Self-cleaning antireflective coating with a hierarchical texture for light trapping in micromorph solar cells[J]. J Mater Chem C,2017,5:103.
43 Fu P H, Lin G J, Wang H P, et al. Enhanced light extraction of light-emitting diodes via nano-honeycomb photonic crystals[J]. Nano Energy,2014,8:78.
44 Kyong H, Jang J, Choi J, et al. Light extraction enhancement from nano-imprinted photonic crystal GaN-based blue light-emitting diodes[J]. Opt Express,2006,14(19):8654.
45 Bermel P, Luo C, Zeng L, et al. Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals[J]. Opt Express,2007,15(25):16986.
46 Coe-Sullivan S, Steckel J S, Woo W K, et al. Large-area ordered quantum-dot monolayers via phase separation during spin-casting[J]. Adv Funct Mater,2005,15(7):1117.
47 Pickering S, Kshirsagar A, Ruzyllo J, et al. Patterned mist deposition of tri-colour CdSe/ZnS quantum dot films toward RGB LED devices[J]. Opto-Electron Rev,2010,20(2):148.
48 Kim B H, Onses M S, Lim J Bin, et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes[J]. Nano Lett,2015,15(2):969.
49 Kong Y L, Tamargo I, Kim H, et al. 3D printed quantum dot light-emitting diodes[J]. Nano Lett,2014,14(12):7017.
50 Park Y, Roh Y G, Kim U J, et al. Nanoscale patterning of colloidal quantum dots on transparent and metallic planar surfaces[J]. Nanotechnology,2012,23(35):355302.
51 Kim L, Anikeeva P O, et al. Contact printing of quantum dot light-emitting devices[J]. Nano Lett,2008,8(12):4513.
52 Choi M K, Yang J, Kang K, et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing[J]. Nat Commun,2015,6:7149.
53 Park J S, Kyhm J, Kim H H, et al. Alternative patterning process for realization of large-area, full-color, active quantum dot display[J]. Nano Lett,2016,16(11):6946.
54 Kim T H, Cho K S, et al. Full-colour quantum dot displays fabricated by transfer printing[J]. Nat Photon,2011,5(3):176.
55 Coe-sullivan S, Zhou Z, Niu Y, et al. Quantum dot light emitting Diodes for near-to-eye and direct view display applications[J]. SID Symposium Digest of Technical Papers,2012,42(1):135.
56 Yang Y, Zheng Y, Cao W, et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures[J]. Nat Photon,2015,9:1.
[1] 张金中, 李坚, 胡海兵, 关立伟. Yb∶MgAg纳米双层阴极的光电特性改善[J]. 材料导报, 2019, 33(z1): 297-299.
[2] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[3] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[4] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[5] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[6] 卢伶,张祥,赵青华. 热激活延迟荧光材料在有机电致发光器件中的研究进展[J]. 材料导报, 2019, 33(15): 2589-2601.
[7] 陈其苗, 宋禹忻, 张振普, 刘娟娟, 芦鹏飞, 李耀耀, 王庶民, 龚谦. 通过晶格失配调节有盖层张应变Ge量子点的光电特性[J]. 材料导报, 2018, 32(6): 1004-1009.
[8] 杨历, 刘远洲, 李子院, 覃爱苗. 硫化铜量子点的研究进展[J]. 材料导报, 2018, 32(21): 3737-3742.
[9] 朱琦,李云辉,赵学森,耿爱芳,马玉芹. 新型有机电致荧光材料研究进展[J]. 材料导报, 2018, 32(19): 3473-3477.
[10] 王春来,李钒,杨焜,刘长军,田丰. 碳量子点-二氧化钛复合光催化剂的研究进展[J]. 材料导报, 2018, 32(19): 3348-3357.
[11] 黄训吉,杨杰,李广洋,王茺,杨宇. 分子束外延制备稀铁磁性MnxGe1-x量子点研究进展[J]. 材料导报, 2018, 32(19): 3338-3347.
[12] 李广洋, 杨杰, 邱锋, 王荣飞, 王茺, 杨宇. 稀磁掺杂MnxGe1-x量子点的制备及应用[J]. 《材料导报》期刊社, 2018, 32(13): 2176-2182.
[13] 刘萍, 曾葆青, 王亚雄, 汪江浩. 纳米线透明导电薄膜的制备及在光电器件中的应用*[J]. 《材料导报》期刊社, 2017, 31(7): 6-18.
[14] 李珍珍, 张其翼, 黄华莹, 任长靖, 赵强. 近红外荧光磁性复合载药脂质体的制备及应用*[J]. 《材料导报》期刊社, 2017, 31(2): 1-7.
[15] 闫鹏, 艾凡荣, 严喜鸾, 刘东雷. 碳量子点的生物应用:成像、载药与毒性*[J]. 《材料导报》期刊社, 2017, 31(19): 35-42.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed