Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (13): 2176-2182    https://doi.org/10.11896/j.issn.1005-023X.2018.13.006
  无机非金属及其复合材料 |
稀磁掺杂MnxGe1-x量子点的制备及应用
李广洋, 杨杰, 邱锋, 王荣飞, 王茺, 杨宇
云南大学材料科学与工程学院,昆明 650091
Preparation and Application of Dilute Magnetic Doping of MnxGe1-x Quantum Dots
LI Guangyang, YANG Jie, QIU Feng, WANG Rongfei, WANG Chong, YANG Yu
School of Materials Science and Engineering,Yunnan University,Kunming 650091
下载:  全 文 ( PDF ) ( 2758KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为一种新兴的稀磁掺杂半导体材料,MnxGe1-x量子点的自旋电子学性能在最近几年内取得了较为重大的突破。本文针对现有MnxGe1-x量子点的稀磁掺杂制备方法及与制备方法相关联的磁电子学性能展开论述,并详细介绍了MnxGe1-x量子点在生长过程中Mn原子与生长表面之间的相互作用、形貌转变以及迄今为止对基于这种纳米材料进行的自旋电子学应用的尝试。最后,展望了MnxGe1-x量子点未来研究的重点和亟待解决的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李广洋
杨杰
邱锋
王荣飞
王茺
杨宇
关键词:  MnxGe1-x量子点  掺杂  铁磁性  居里温度    
Abstract: As a new kind of diluted magnetic semiconductor materials, the study on spintronics properties of the MnxGe1-x quantum dots have made a great breakthrough in recent years. The current preparation method of the diluted magnetic doping MnxGe1-x quantum dots and its related magnetic properties have been well discussed. The interaction between Mn ion and growth surface, morphology evolution, and attempts for spintronics application based on such nanomaterials have also been introduced in detailed. At the end of this article, we focus on the key spot of the research and the problems that need to be solved for the application of MnxGe1-x quantum dots in the near future.
Key words:  MnxGe1-x quantum dots    doping    ferromagnetism    Cuire temperature
               出版日期:  2018-07-10      发布日期:  2018-08-01
ZTFLH:  TB332  
基金资助: 国家自然科学基金(11564043;11274266);云南省教育厅重点项目(2015Z017);云南省科技计划面上项目(2016FB002);云南省引进高层次人才项目;云南大学研究生科研创新基金项目
通讯作者:  王茺:通信作者,男,1978年生,博士,副研究员,硕士研究生导师,研究方向为低维纳米光电子材料与器件 E-mail:cwang@ynu.edu.cn   
作者简介:  李广洋:女,1993年生,硕士研究生,从事稀磁掺杂半导体光磁电性能的研究 E-mail:601298153@qq.com
引用本文:    
李广洋, 杨杰, 邱锋, 王荣飞, 王茺, 杨宇. 稀磁掺杂MnxGe1-x量子点的制备及应用[J]. 《材料导报》期刊社, 2018, 32(13): 2176-2182.
LI Guangyang, YANG Jie, QIU Feng, WANG Rongfei, WANG Chong, YANG Yu. Preparation and Application of Dilute Magnetic Doping of MnxGe1-x Quantum Dots. Materials Reports, 2018, 32(13): 2176-2182.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.13.006  或          http://www.mater-rep.com/CN/Y2018/V32/I13/2176
1 Lou Caoxin.Study of the properties and the quantum structure preparation of dilute magnetic germanium[D].Jinhua:Zhejiang Normal University,2011(in Chinese).
楼曹鑫.稀磁锗(Ge)量子结构制备及其特性研究[D].金华:浙江师范大学,2011.
2 Dietl T, Ohno H, Matsukura F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors[J].Physical Review B,2000,63(19):797.
3 Cho S, Choi S, Hong S C, et al. Ferromagnetism in Mn-doped Ge[J].Physical Review B,2002,66(3):3606.
4 Ottaviano L, Continenza A, Profeta G, et al. Room-temperature ferromagnetism in Mn-implanted amorphous Ge[J].Physical Review B Condensed Matter,2011,83(13):1498.
5 Nolph C A, Simov K R, Ramalingam G, et al. Magnetic doping of Ge-quantum dots: Growth studies exploring the feasibility of modulating QD properties[J].Spie-nanoepitaxy: Materials & Devices VI,2014,9174:91740O.
6 Deng J X, Tian Y F, Yan S S, et al. Magnetism of amorphous Ge1-xMnx magnetic semiconductor films[J].Journal of Applied Physics,2008,104(1):013905.
7 Jain A, Jamet M, Barski A, et al. Structure and magnetism of Ge3Mn5 clusters[J].Journal of Applied Physics,2011,109(1):013911.
8 Yakimov A I, Dvurechenskii A V, Minkov G M, et al. Hopping magnetoresistance in two-dimensional arrays of Ge/Si quantum dots[J].Physica Status Solidi,2006,3(2):296.
9 Li A P, Wendelken J F, Shen J. Magnetism in MnxGe1-x semiconductors mediated by impurity band carriers[J].Physical Review B,2005,72(19):195205.
10 Park Y D, Hanbicki A T, Erwin S C, et al. A group-Ⅳ ferromagnetic semiconductor: MnxGe1-x[J].Science,2002,295(5555):651.
11 Pinto N, Morresi L, Ficcadenti M, et al. Magnetic and electronic transport percolation in epitaxial GeMn films[J].Physical Review B,2005,72(16):165203.
12 Tardif S, Favre-Nicolin V, Lancon F, et al. Strain and correlation of self-organized Ge1-x Mnx nanocolumns embedded in Ge (001)[J].Physical Review B Condensed Matter,2010,82(10):239.
13 Xiu F, Wang Y, Kim J, et al. Room-temperature electric-field controlled ferromagnetism in Mn0.05Ge0.95 quantum dots[J].ACS Nano,2010,4(8):4948.
14 Zeng L, Cao J X, Helgren E, et al. Distinct local electronic structure and magnetism for Mn in amorphous Si and Ge[J].Physical Review B,2010,82(16):4393.
15 Bolduc M, Awo-Affouda C, Stollenwerk A, et al. Above room temperature ferromagnetism in Mn-ion implanted Si[J].Physical Review B,2005,71(3):3302.
16 Chen Y F, Lee W N, Huang J H, et al. Growth and magnetic pro-perties of self-assembled (In, Mn)As quantum dots[J].Journal of Vacuum Science & Technology B,2005,23(4):1376.
17 Bree J V, Koenraad P M, Fernández-Rossier J, et al.Single-exciton spectroscopy of single Mn doped InAs quantum dots[J].Physical Review B,2008,78(16):165414.
18 Ma Y J, Zhong Z, Yang X J, et al. Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate[J].Nanotechnology,2013,24(1):15304.
19 Xiu F, Wang Y, Kim J, et al. Electric-field-controlled ferromagne-tism in high-Curie-temperature Mn0.05Ge0.95 quantum dots[J].Nature Materials,2010,9(4):337.
20 Wang L, Liu T, Wang S, et al. Fabrication and ferromagnetism of Si-SiGe/MnGe core-shell nanopillars[J].Nanotechnology,2016,27(40):405705.
21 Nie T, Tang J, Wang K L. Quest for high-Curie temperature MnxGe1-x diluted magnetic semiconductors for room-temperature spintronics applications[J].Journal of Crystal Growth,2015,425:279.
22 zer M M, Thompson J R, Weitering H H. Growth and magnetic properties of Mn-doped germanium near the kinetic solubility limit[J].Physical Review B,2012,85(12):117.
23 Kassim J, Nolph C, Jamet M, et al. Ge1-xMnx heteroepitaxial quantum dots: Growth, morphology, and magnetism[J].Journal of Applied Physics,2013,113(7):073910.
24 Nie T, Tang J, Kou X, et al. Enhancing electric-field control of ferromagnetism through nanoscale engineering of high-Tc MnxGe1-x nanomesh[J].Nature Communications,2016,7:12866.
25 Nolph C A, Kassim J K, Floro J A, et al. Addition of Mn to Ge quantum dot surfaces-interaction with the Ge QD {105} facet and the Ge(001) wetting layer[J].Journal of Physics Condensed Matter,2013,25(31):315801.
26 Zhu W, Weitering H H, Wang E G, et al. Contrasting growth modes of Mn on Ge(100) and Ge(111) surfaces: Subsurface segregation versus intermixing[J].Physical Review Letters,2004,93(12):126102.27 Toydemir B, Onel A C, Ertas M, et al. Role of nitrogen on the magnetic properties of MBE grown Mn0.04Ge0.96 films[J].Journal of Magnetism & Magnetic Materials,2015,393:220.
28 Zhu W, Zhang Z, Kaxiras E. Dopant-assisted concentration enhancement of substitutional Mn in Si and Ge[J].Physical Review Letters,2008,100(2):027205.
29 Chen H, Zhu W, Kaxiras E, et al. Optimization of Mn doping in group-Ⅳ-based dilute magnetic semiconductors by electronic Co-dopants[J].Physical Review B,2009,79(23):1377.
30 Portavoce A, Abbes O, Rudzevich Y, et al. Manganese diffusion in monocrystalline germanium[J].Scripta Materialia,2012,67(3):269.
31 Majumdar S, Bhaumik S, Rana K, et al. Temperature-dependent structure and magnetism of Mn-doped Ge nanowires[J].Physica Status Solidi,2014,211(4):877.
32 Toydemir B, Onel A C, Ertas M, et al. Dependence of magnetic properties on the growth temperature of Mn0.04 Ge0.96 grown on Si (001)[J].Journal of Magnetism & Magnetic Materials,2015,374:354.
33 Réotier P D D, Prestat E, Bayle-Guillemaud P, et al. Core-shell nanostructure in a Ge0.9Mn0.1 film observed via structural and magnetic measurements[J].Physical Review B,2015,91(24):245408.
34 Wang L, Liu T, Jia Q, et al. Research update: Strain and composition effects on ferromagnetism of Mn0.05Ge0.95 quantum dots[J].APL Materials,2016,4(4):040701.
35 Zhou Xueyun.Research diluted magnetic semiconductor[D].Lan-zhou:Lanzhou University,2009(in Chinese).
周雪云.稀稀释磁性半导体研究[D].兰州:兰州大学,2009.
36 Makarov A, Windbacher T, Sverdlov V, et al. CMOS-compatible spintronic devices: A review[J].Semiconductor Science and Techno-logy,2016,31(11):113006.
37 Yang C Y, Chiu K C, Chang S J, et al. Phase-driven magneto-electrical characteristics of single-layer MoS2[J].Nanoscale,2016,8(10):5627.
38 Koo H C, Jung I, Kim C. Spin-based complementary logic device using Datta-Das transistors[J].IEEE Transactions on Electron Devices,2015,62(9):3056.
39 Lau Y C, Betto D, Rode K, et al. Spin-orbit torque switching wi-thout an external field using interlayer exchange coupling[J].Nature Nanotechnology,2016,11(9):758.
40 Xiu F, Yong W, Jin Z, et al. Electric-field controlled ferromagne-tism in MnGe magnetic quantum dots[J].ChemInform,2012,43(1):4948.
41 Nie X T, Kou X, Tang J, et al. Nanoengineering of an Si/MnGe quantum dot superlattice for high Curie-temperature ferromagnetism[J].Nanoscale,2017,9:3086.
42 Mansour A, Imen J, Anup B, et al. Mn-doped Ge self-assembled quantum dots via dewetting of thin films[J].Applied Surface Science,2017,397:40.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[3] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[4] 潘云, 吴承仁, 陈绍维, 伍小波. 氧还原催化材料与催化机理及活性位点的研究进展[J]. 材料导报, 2019, 33(z1): 41-44.
[5] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[6] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[7] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[8] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[9] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[10] 阿比迪古丽·萨拉木, 吾尔尼沙·依明尼亚孜, 买买提热夏提·买买提, 吴钊峰. 掺杂对BiFeO3薄膜电、磁特性影响综述[J]. 材料导报, 2019, 33(5): 791-796.
[11] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[12] 郭景锋, 曹铁山, 程从前, 王富岗, 孟宪明, 赵杰. 氧化对Cr25Ni35Nb与Cr35Ni45Nb合金组织和磁性的影响[J]. 材料导报, 2019, 33(4): 650-653.
[13] 周宏明, 王博益, 李荐, 程名辉. CuO掺杂对钇钡铜氧陶瓷电性能的影响[J]. 材料导报, 2019, 33(2): 220-224.
[14] 莫晓华, 蒋卫卿. Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究[J]. 材料导报, 2019, 33(2): 225-229.
[15] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed