Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 21040055-11    https://doi.org/10.11896/cldb.21040055
  金属与金属基复合材料 |
腐蚀条件下高强钢超高周疲劳性能及损伤机理研究进展
吴省均1,2, 陈跃良2,*, 张勇2, 卞贵学2, 张杨广2, 王安东2, 张柱柱1
1 92728部队,上海 200040
2 海军航空大学青岛校区,山东 青岛 266041
Research Progress on Very High Cycle Fatigue Performance and Damage Mechanism of High Strength Steel Under Corrosion Condition
WU Xingjun1,2, CHEN Yueliang2,*, ZHANG Yong2, BIAN Guixue2, ZHANG Yangguang2, WANG Andong2, ZHANG Zhuzhu1
1 92728 Troops, Shanghai 200040, China
2 Naval Aeronautical University Qingdao Branch, Qingdao 266041, Shandong, China
下载:  全 文 ( PDF ) ( 7878KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在疲劳载荷作用下,材料发生裂纹萌生、扩展直至断裂的周次在107以上的过程被称为超高周疲劳。部分高强钢机械部件需在恶劣环境中服役,服役期间承受的疲劳载荷周次高达108~1011,高强钢在腐蚀环境中的超高周疲劳问题成为影响结构可靠性、安全性的关键问题,是航空航天、汽车、高铁等领域亟待解决的难点。
得益于金属材料在传统疲劳问题上的总结积累与先进试验手段的助力,诸多学者开发出多种新的试验方法,有针对性地对高强钢在腐蚀条件下的超高周疲劳问题展开研究。目前,关于腐蚀条件下高强钢超高周疲劳性能退化规律及损伤机理、腐蚀条件下裂纹萌生竞争机制及裂纹初期扩展行为、氢对高强钢超高周疲劳性能及颗粒亮面形成机制的影响等核心问题的认识愈发清晰,逐渐从对试验现象的描述与归纳深入到对损伤机理的探索与推演,而且部分研究成果已经逐步在工程实践中得到应用。
本文首先从S-N曲线等角度简述了高强钢无腐蚀条件下的超高周疲劳损伤特征;然后总结了典型腐蚀介质对高强钢超高周疲劳性能的影响,并指出氢脆断裂为高强钢在腐蚀环境中的断裂机理之一;随后详述了氢对高强钢超高周疲劳性能及颗粒亮面形成机制的影响研究进展;最后对几个关键问题进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴省均
陈跃良
张勇
卞贵学
张杨广
王安东
张柱柱
关键词:  超高周疲劳  高强钢  腐蚀介质  疲劳强度  裂纹萌生    
Abstract: The process of crack initiation, propagation and fracture with more than 107 cycles under fatigue load is called very high cycle fatigue. Parts of machines made of high strength steel need to be used in corrosive environment, and they need to bear up to 108—1011 fatigue loads during the service life. The problem of very high cycle fatigue of high strength steel in corrosive environment has become a key problem affecting the reliability and safety of structures, and it has become an urgent difficulty to be solved in aerospace, automobile, high-speed railway and other fields.
Thanks to the summary and accumulation of metal materials on traditional fatigue problems and the help of advanced test methods, many scholars have developed a variety of new test methods to study the very high cycle fatigue of high strength steel under corrosive conditions. At present, the core problems such as the degradation law and damage mechanism of very high cycle fatigue properties of high strength steel under corrosive conditions, the competition mechanism of crack initiation and initial crack propagation behavior under corrosive conditions, and the effect of hydrogen on very high cycle fatigue properties of high strength steel and the formation mechanism of granular bright facet are becoming more and more clear. Moreover, some research results have been gradually applied in engineering practice.
In this review, the very high cycle fatigue damage characteristics of high strength steel without corrosion are briefly described from the perspective of S-N curve. Then the effects of typical corrosive media on very high cycle fatigue properties of high strength steel are summarized, also it is pointed out that hydrogen embrittlement fracture is one of the fracture mechanisms of high strength steel in corrosive environment. Then, the research progress of hydrogen on very high cycle fatigue properties of high strength steel and the formation mechanism of granular bright facet are described in detail. Finally, several key issues are prospected.
Key words:  very high cycle fatigue(VHCF)    high strength steel    corrosive medium    fatigue strength    crack initiation
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  TB301  
基金资助: 国家自然科学基金(51375490);山东省高等学校“青创科技计划”(2020KJA014)
通讯作者:  * 陈跃良,海军航空大学教授、博士研究生导师。1989年、1999年获得空军工程学院学士、硕士学位,2005年获西北工业大学博士学位。主要从事飞机结构强度、腐蚀与防护等方向的研究。获国家科技进步二等奖1项,出版《飞机结构电偶腐蚀数值模拟》等专著5部,起草国家军用标准3部,发表学术论文157篇,其中SCI和EI收录35篇,授权发明专利11项。cyl0532@sina.com   
作者简介:  吴省均,2016年6月华中科技大学材料科学与工程专业本科毕业,2018年12月海军航空大学航空宇航科学与技术专业硕士毕业,2022年12月海军航空大学航空宇航科学与技术专业博士毕业,导师为陈跃良教授。现为海军92728部队工程师,研究方向为腐蚀防护与结构强度。
引用本文:    
吴省均, 陈跃良, 张勇, 卞贵学, 张杨广, 王安东, 张柱柱. 腐蚀条件下高强钢超高周疲劳性能及损伤机理研究进展[J]. 材料导报, 2023, 37(12): 21040055-11.
WU Xingjun, CHEN Yueliang, ZHANG Yong, BIAN Guixue, ZHANG Yangguang, WANG Andong, ZHANG Zhuzhu. Research Progress on Very High Cycle Fatigue Performance and Damage Mechanism of High Strength Steel Under Corrosion Condition. Materials Reports, 2023, 37(12): 21040055-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040055  或          http://www.mater-rep.com/CN/Y2023/V37/I12/21040055
1 Wu F M. Structural fatigue strength, Northwestern Polytechnical University Press, China, 1985, pp.16 (in Chinese).
吴富民. 结构疲劳强度, 西北工业大学出版社, 1985, pp.16.
2 Suresh S. Fatigue of materials, Wang G Z, translate. Second edition. National Defence Industrial Press, China, 1993, pp.158 (in Chinese).
Suresh S. 材料的疲劳, 王中光, 译. 第二版. 国防工业出版社, 1993, pp.158.
3 Asami K, Sugiyama Y. Journal of the Japan Society for Heat Treatment, 1985, 25(3), 147.
4 Hong Y S, Sun C Q, Liu X L. Advances in Mechanics, 2018 (1), 1 (in Chinese).
洪友士, 孙成奇, 刘小龙. 力学进展, 2018 (1), 1.
5 Xu W, Huang M H, Wang J L, et al. Acta Metallurgica Sinica, 2020, 56(4), 81 (in Chinese).
徐伟, 黄明浩, 王金亮, 等. 金属学报, 2020, 56(4), 81.
6 Perez-mora R, Palin-luc T, Bathias C, et al. International Journal of Fatigue, 2015, 74(5), 156.
7 Xie D G, Li M, Shan Z W. Materials China, 2018, 37(3), 215 (in Chinese).
解德刚, 李蒙, 单智伟. 中国材料进展, 2018, 37(3), 215.
8 Yang C, Luan Y, Li D, et al. International Journal of Fatigue, 2020, 131(2), 105263.
9 Hong Y S, Zhao A G, Qian G A. Acta Metallurgica Sinica, 2009, 45(7), 769 (in Chinese)
洪友士, 赵爱国, 钱桂安. 金属学报, 2009, 45(7), 769.
10 Murakami Y, Yokoyama N N, Nagata J. Fatigue & Fracture of Engineering Materials & Structures, 2002, 25(8-9), 735.
11 Shiozawa K, Lu L. Fatigue & Fracture of Engineering Materials & Structures, 2002, 25(8-9), 813.
12 Zhang J M, Li S X, Yang Z G. International Journal of Fatigue, 2007, 29(4), 765.
13 Tanaka T K. International Journal of Fatigue, 2006, 28(11), 1555.
14 Hong Y, Zhao A, Qian G, et al. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2012, 43A(8), 2753.
15 Murakami Y, Nomoto T, Ueda T, et al. Fatigue & Fracture of Engineering Materials & Structures, 1999, 22, 581.
16 Sakai T, Sato Y, Oguma N. Fatigue & Fracture of Engineering Materials & Structures, 2010, 25(664), 765.
17 Ochi Y, Matsumura T, Masaki K, et al. Fatigue & Fracture of Engineering Materials & Structures, 2002, 25(8-9), 823.
18 Shiozawa K, Lu L, Ishihara S. Fatigue & Fracture of Engineering Materials & Structures, 2001, 24(12), 781.
19 Cheng L, Jiao S B, Li Q T, et al. Very high cycle fatigue and fracture, National Defence Industrial Press, China, 2017, pp.109 (in Chinese).
程礼, 焦胜博, 李全通, 等. 超高周疲劳与断裂, 国防工业出版社, 2017, pp.109.
20 Mughrabi H. Fatigue & Fracture of Engineering Materials & Structures, 1999, 22(7), 633.
21 Miller K J, O’donnell W J. Fatigue & Fracture of Engineering Materials & Structures, 1999, 22(7), 545.
22 Holper B, Mayer H, Vasudevan A K, et al. International Journal of Fatigue, 2004, 26, 27.
23 Murakami Y, Usuki H. International Journal of Fatigue, 1989, 11(5), 299.
24 Guennec B, Ueno A, Sakai T, et al. International Journal of Fatigue, 2014, 66(9), 29.
25 Cao C, Zhen S S, Hu W B, et al. Material Reports, 2020, 34(6), 11162 (in Chinese).
曹琛, 郑山锁, 胡卫兵, 等. 材料导报, 2020, 34(6), 11162.
26 Mayer H. Fatigue & Fracture of Engineering Materials and Structures, 2016, 39(1), 3.
27 Song Y N, Xu B S, Wang H D, et al. Rare Metal Materials and Engineering, 2016, 45(5), 1203 (in Chinese).
宋亚南, 徐滨士, 王海斗, 等. 稀有金属材料与工程, 2016(5), 1203.
28 Bayraktar E, Mora R, Garcia I M, et al. International Journal of Fatigue, 2009, 31(10), 1532.
29 Nakajima M, Tokaji K, Itoga H. Fatigue & Fracture of Engineering Materials & Structures, 2003, 26(12), 1113.
30 Qian G A, Hong Y S. Acta Metallurgica Sinica, 2009(11), 80 (in Chinese).
钱桂安, 洪友士. 金属学报, 2009(11), 80.
31 Schmid S, Hahn M, Issler S, et al. International Journal of Fatigue, 2014, 60(5), 90.
32 Bannikov M V, Naimark O B. Procedia Structural Integrity, 2016(2), 1071.
33 Tokaji K, Ko H N, Nakajima M, et al. Materials Science & Engineering A, 2003, 345(1-2), 197.
34 Hong Y S, Qian G A. Key Engineering Materials, 2011, 462-463, 355.
35 Qian G, Zhou C, Hong Y S. Acta Materialia, 2011, 59(4), 1321.
36 Qian G, Zhou C, Hong Y S. International Journal of Fatigue, 2015, 71(1), 35.
37 Schoenbauer B M, Stanzl-tschegg S E, Perlega A, et al. International Journal of Fatigue, 2014, 65(8), 33.
38 Schoenbauer B M, Perlega A, Karr U P, et al. International Journal of Fatigue, 2015, 76(7), 19.
39 Schoenbauer B M, Stanzl-tschegg S E, Perlega A, et al. Engineering Fracture Mechanics, 2015, 147, 158.
40 Palin-luc T, Rubén P, Bathias C, et al. Engineering Fracture Mechanics, 2010, 77(11), 1953.
41 Issler S, Bacher-hoechst M, Schmid S. Materials Science Forum, 2014, 783-786, 1845.
42 Ebara R. Materials Science and Engineering A, 2007, 468-470, 109.
43 Ebara R. International Journal of Fatigue, 2006, 28(11), 1465.
44 Wang J, Zhang Y, Liu S, et al. International Journal of Fatigue, 2016, 87, 203.
45 Zhang M, Wang W Q, Liu P F, et al. Engineering Failure Analysis, 2016, 664, 231.
46 Li S Y, Hu R S, Zhao R M, et al. Surface Technology, 2020(8), 15 (in Chinese).
李守英, 胡瑞松, 赵卫民, 等. 表面技术, 2020(8), 15.
47 Han C S. Atlas of microstructure on matals corrosion, National Defense Industry Press, China, 2008, pp.195 (in Chinese).
韩顺昌. 金属腐蚀显微组织图谱, 国防工业出版社, 2008, pp.195.
48 Li Y D, Chen S M, Liu Y B, et al. Journal of Materials Science, 2010, 45(3), 831.
49 Sanchez J, Lee S F, Martin-Rengel M A, et al. Engineering Failure Analysis, 2015, 59, 467.
50 Li Y D, Xu N, Shi J B, et al. Transactions of Materials and Heat Treatment, 2015, 36(5), 77 (in Chinese).
李永德, 徐娜, 时军波, 等. 材料热处理学报, 2015, 36(5), 77.
51 Li Y D, Yang Z G, Li S X, et al. Advanced Engineering Materials, 2009, 11(7), 561.
52 Li Y D, Yang Z G, Liu Y B, et al. Materials Science & Engineering A, 2008, 489(1-2), 373.
53 Silverstein R, Eliezer D, Tal-gutelmacher E. Journal of Alloys & Compounds, 2018, 747, 511.
54 Zhou C, Zhang Y J, Hui W J, et al. Journal of Iron and Steel Research, International, 2013, 20(12), 92.
55 Murakami Y, Matsunaga H, International Journal of Fatigue, 2006, 28(11), 1509.
56 Li S X, Weng Y Q, Hui W J, et al. Very high cycle fatigue properties of high strength steels, Metallurgical Industry Press, China, 2010, pp.53 (in Chinese).
李守新, 翁宇庆, 惠卫军, 等. 高强度钢超高周疲劳性能, 冶金工业出版社, 2010, pp.53.
57 Yukitaka M, Junji N. Journal of the Society of Materials Science Japan, 2005, 54(4), 420.
58 Furuya Y, Hirukawa H, Hayakawa M. Metallurgical & Materials Tran-sactions A, 2010, 41(9), 2248.
59 Karsch T, Bomas H, Zoch H W, et al. International Journal of Fatigue, 2014, 60, 74.
60 Chapetti M D, Tagawa T, Miyata T. Materials Science and Engineering A, 2003, 356(1-2), 236.
61 Li Y D, Xu N, Guo W M, et al. Journal of Materials Engineering, 2014(2), 91 (in Chinese).
李永德, 徐娜, 郭卫民, 等. 材料工程, 2014(2), 91.
62 Hong Y, Lei Z, Sun C, et al. International Journal of Fatigue, 2014, 58, 144.
63 Murakami Y, Nomoto T, Ueda T. Fatigue & Fracture of Engineering Materials & Structures, 2000, 23(11), 903.
64 Tanaka K, Akiniwa Y. Fatigue & Fracture of Engineering Materials & Structures, 2002, 25(8-9), 775.
65 Takai K, Homma Y, Izutsu K, et al. The Journal of the Japan Institute of Metals, 1996, 60(12), 1155.
66 Murakami Y, Nomoto T, Ueda T, et al. Fatigue & Fracture of Engineering Materials & Structures, 2000, 23(11), 893.
67 Yang Z G, Li S X, Liu Y B, et al. International Journal of Fatigue, 2008, 30(6), 1016.
68 Birnbaum H K, Sofronis P. Materials Science and Engineering: A, 1994, 176(1-2), 191.
69 Liu Y B, Yang Z G, Li Y D, et al. Materials Science and Engineering A, 2008, 497(1-2), 408.
70 Paolino D S, Tridello A, Chiandussi G, et al. Fatigue & Fracture of Engineering Materials & Structures, 2016, 39(11), 1319.
71 Chai G, Zhou N. Ultrasonics, 2013, 53(8), 1406.
72 Istomin K, Benjamin D, Schell N, et al. International Journal of Fatigue, 2014, 66, 177.
73 Ebara R. Procedia Engineering, 2016, 160, 21.
[1] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[2] 王群, 李晨宇, 周忠华, 曹文, 周子吉, 孙慧慧, 黄悦, 沈志奇. 化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟[J]. 材料导报, 2023, 37(5): 21050255-5.
[3] 王歧山, 何川, 陈旭. 金属工程材料腐蚀疲劳行为研究进展[J]. 材料导报, 2023, 37(1): 20100223-9.
[4] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[5] 陈光鹏, 张春涛. 泡沫灭火后Q460高强钢力学性能试验研究[J]. 材料导报, 2021, 35(6): 6151-6156.
[6] 余明华, 高杰维, 刘里根, 李亚波, 韩靖, 戴光泽, 赵君文. 外物损伤对S38C车轴钢疲劳性能的影响[J]. 材料导报, 2021, 35(20): 20092-20098.
[7] 何春雨, 余伟, 程知松, 王铭阳, 唐荻. 高强耐蚀车体用钢热变形行为及本构方程的研究[J]. 材料导报, 2021, 35(18): 18153-18162.
[8] 郝新超, 薛斌. 复合材料疲劳强度分布与疲劳验证载荷放大系数[J]. 材料导报, 2020, 34(Z2): 447-452.
[9] 李彩云, 邢志国, 赵向伟, 王海斗, 李国禄, 石佳东. 强化方法对重载齿轮弯曲疲劳强度影响的研究现状与建议[J]. 材料导报, 2020, 34(21): 21146-21154.
[10] 孔焕平, 姜涛, 刘昌奎, 应少军, 赵凯. 多轴复杂应力形式下TB6高强钛合金耳片的微动疲劳断裂研究[J]. 材料导报, 2020, 34(14): 14134-14139.
[11] 易金权, 曾凯, 邢保英, 冯煜阳, 翟停停. DP780高强钢胶接点焊的多元非线性回归模型[J]. 材料导报, 2020, 34(11): 11071-11075.
[12] 郭纯, 马明亮, 胡瑞章, 杨拓宇, 陈丰. 电弧增材制造舰船用高强钢10CrNi3MoV的组织及性能[J]. 材料导报, 2019, 33(Z2): 455-459.
[13] 李红, 刘旭升, 张宜生, JacekSenkara, 李光瀛, 马鸣图. 新能源电动汽车异种材料连接技术的挑战、趋势和进展[J]. 材料导报, 2019, 33(23): 3853-3861.
[14] 武焕春, 薛飞, 李成涛, 方可伟, 杨滨, 宋西平. 核电主管道不锈钢在高温高压水环境下的疲劳裂纹萌生行为[J]. 《材料导报》期刊社, 2018, 32(3): 373-377.
[15] 赵伦, 何晓聪, 张先炼, 丁燕芳, 刘洋, 邓聪. TA1钛合金自冲铆接头力学性能及微动行为[J]. 材料导报, 2018, 32(20): 3579-3583.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed