Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 22030040-7    https://doi.org/10.11896/cldb.22030040
  新型环境功能材料 |
Cu-ZnO/g-C3N4复合材料可见光催化降解环丙沙星效率及机理研究
蒋柱武*, 史安童, 沈俊宏*
福建工程学院生态环境与城市建设学院,福州 350118
Study on Efficiency and Mechanism of Visible-light Photocatalytic Degradation of Ciprofloxacin by Using Cu-ZnO/g-C3N4 Composite
JIANG Zhuwu*, SHI Antong, SHEN Junhong*
College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China
下载:  全 文 ( PDF ) ( 4880KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对抗生素类新型污染物在水环境中的污染现状及治理问题,本研究制备了Cu掺杂ZnO耦合g-C3N4的复合材料(Cu-ZnO/g-C3N4),并考察其在可见光下催化降解抗生素环丙沙星(CIP)的反应效率。通过X射线衍射(XRD)、红外光谱(FTIR)、扫描电镜(SEM)、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)、荧光光谱(PL)和电子自旋顺磁共振(ESR)等分析手段对合成材料进行了表征,借助羟基自由基(·OH)测量技术量化了不同材料反应体系中·OH生成浓度的变化,进一步探究可能的光催化反应机理。结果表明,Cu-ZnO/g-C3N4复合材料在其异质结效应下具有极佳的可见光响应和增强的电荷转移性能,反应6 h后对CIP的去除效率高达97%,反应速率常数分别是ZnO、Cu-ZnO、g-C3N4的6.19倍、2.41倍和2.06倍,Cu-ZnO/g-C3N4复合材料是一种可用于去除水中微量污染物的高效可见光催化材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋柱武
史安童
沈俊宏
关键词:  复合材料  可见光催化降解  环丙沙星  羟基自由基  异质结效应    
Abstract: With the aim of solving the pollution and remediation issues of antibiotic pollutants in aquatic environment, a novel Cu-ZnO/g-C3N4 composite photocatalyst was synthesized in this work, with Cu-doped ZnO coupled with g-C3N4. The degradation efficiency of ciprofloxacin (CIP) in the photocatalytic process of Cu-ZnO/g-C3N4 under visible-light irradiation was investigated. Through various means such as X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscopy (TEM), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), photoluminescence (PL) and electron spin resonance spectroscopy (ESR), the material properties of synthesized photocatalysts were characterized. By using the measurement technology of hydroxyl radicals (·OH), the formed concentration of ·OH during photocatalytic process was quantified to further explore possible reaction mechanism. The results demonstrate that Cu-ZnO/g-C3N4 possesses excellent visible-light responsivity and enhanced charge transfer ability due to a heterojunction effect, thereby CIP degradation rapidly reaching to 97% after 6 h. The reaction rate constant of Cu-ZnO/g-C3N4 is 6.19 times, 2.41 times and 2.06 times larger than that of ZnO, Cu-ZnO and g-C3N4, respectively. Thus, the synthesized Cu-ZnO/g-C3N4 can serve as an efficient visible-light active photocatalyst for micropollutant removal in water.
Key words:  composite material    visible-light photocatalytic degradation    ciprofloxacin    hydroxyl radicals    heterojunction effect
发布日期:  2022-10-26
ZTFLH:  O649  
基金资助: 国家自然科学基金(51878171)
通讯作者:  *jiangzhuwu@126.com; cgh1210@gmail.com   
作者简介:  蒋柱武,福建工程学院教授、硕士研究生导师。1997年7月、2001年3月和2006年6月分别于重庆大学、同济大学获得工学学士、硕士及博士学位。主要从事水污染控制与水质安全方面的研究。主持国家自然科学基金面上项目2项,获国家发明专利6项,发表论文40余篇。
沈俊宏,福建工程学院讲师。2008年6月、2010年6月、2018年6月分别于中国台湾云林科技大学获工学学士、硕士、博士学位。主要从事高级氧化技术及其应用于水体污染生态修复方面的研究,发表学术论文50余篇,其中SCI论文10余篇。
引用本文:    
蒋柱武, 史安童, 沈俊宏. Cu-ZnO/g-C3N4复合材料可见光催化降解环丙沙星效率及机理研究[J]. 材料导报, 2022, 36(20): 22030040-7.
JIANG Zhuwu, SHI Antong, SHEN Junhong. Study on Efficiency and Mechanism of Visible-light Photocatalytic Degradation of Ciprofloxacin by Using Cu-ZnO/g-C3N4 Composite. Materials Reports, 2022, 36(20): 22030040-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030040  或          http://www.mater-rep.com/CN/Y2022/V36/I20/22030040
1 Sharma P C, Jain A, Jain S, et al. Journal of Enzyme Inhibition and Medicinal Chemistry, 2010, 25(4), 577.
2 Chen H T, Lu Y, Li G Q, et al. Chinese Medicinal Biotechnology, 2021, 16(1), 32(in Chinese).
陈虹彤, 卢芸, 李国庆, 等. 中国医药生物技术, 2021, 16(1), 32.
3 Asghar A, Abdul Raman A A, Wan Daud W M A. Journal of Cleaner Production, 2015, 87, 826.
4 Georgekutty R,Seery M K,Pillai S C.The Journal of Physical Chemistry C, 2008, 112(35), 13563.
5 Wen J, Xie J, Chen X, et al. Applied Surface Science, 2017, 391, 72.
6 Jiang G M, Peng M, Lyu X S, et al. Journal of Chongqing Technology and Business University (Natural Science Edition),2021,38(3),1.
蒋光明,彭敏,吕晓书,等.重庆工商大学学报(自然科学版),2021,38(3),1.
7 Ding P, Ji H, Li P, et al. Applied Catalysis B: Environmental, 2022, 300, 120633.
8 Wu Y, Ji H, Liu Q, et al. Journal of Hazardous Materials, 2022, 424, 127563.
9 Li P, Guo M, Wang Q, et al. Applied Catalysis B: Environmental, 2019, 259, 118107.
10 Li P, Gao S, Liu Q, et al. Advanced Energy and Sustainability Research, 2021, 2(5), 2000097.
11 Li P, Zhou Z, Wang Q, et al. Journal of the American Chemical Society, 2020, 142(28), 12430.
12 Goktas S, Goktas A. Journal of Alloys and Compounds, 2021, 863, 158734.
13 Xue Y, Ji Y, Wang X, et al. Green Energy & Environment, DOI: 10.1016/j.gee.2021.11.002.
14 Samadi M, Zirak M, Naseri A, et al. Thin Solid Films, 2016, 605, 2.
15 Li Y, Zhou M, Cheng B, et al.Journal of Materials Science & Technology, 2020, 56, 1.
16 Qamar M A, Shahid S, Javed M, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112776.
17 Iqbal S,Bahadur A,Javed M,et al.Materials Science and Engineering:B, 2021, 272, 115320.
18 Ta Q T H, Namgung G, Noh J S.Journal of Photochemistry and Photo-biology A: Chemistry, 2019, 368, 110.
19 Shen J H, Jiang Z W, Liao D Q, et al. Journal of Water Process Engineering, 2021, 40, 101893.
20 Wu Y, Ward-Bond J, Li D, et al. ACS Catalysis, 2018, 8(7), 5664.
21 Chou C M, Chang Y C, Lin P S, et al. Materials Chemistry and Physics, 2017, 201, 18.
22 Truc N T T, Duc D S, Van Thuan D, et al. Applied Surface Science, 2019, 489, 875.
23 Qi K, Cheng B, Yu J, et al. Journal of Alloys and Compounds, 2017, 727, 792.
24 Liu J, Zhang T, Wang Z, et al. Journal of Materials Chemistry, 2011, 21(38), 14398.
25 Jo W K, Selvam N C S. Journal of Hazardous Materials, 2015, 299, 462.
26 Lam S M, Quek J A, Sin J C. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 171.
27 Chai B, Wang X, Cheng S, et al. Ceramics International, 2014, 40, 429.
28 Jung H, Pham T T, Shin E W. Applied Surface Science, 2018, 458, 369.
29 Liu Y, Liu H, Zhou H, et al. Applied Surface Science, 2019, 466, 133.
30 Tang H, Wang R, Zhao C, et al. Chemical Engineering Journal, 2019, 374, 1064.
31 Delsouz K M R, Shafeeyan M S, Raman A A A, et al. Journal of Mole-cular Liquids, 2018, 258, 354.
32 Kamlesh V C, Mohd S, Badria M A, et al. Materials Characterization, 2020, 165, 110387.
33 Kim D, Yong K. Applied Catalysis B: Environmental, 2021, 282, 119538.
34 Liu X, Ye L, Liu S, et al. Scientific Reports, 2016, 6(1), 38474.
35 Chandekar K V, Shkir M, Al-Shehri B M, et al. Materials Characterization, 2020, 165, 110387.
36 Ge L, Han C, Xiao X, et al. International Journal of Hydrogen Energy, 2013, 38(17), 6960.
37 Rong X, Qiu F, Jiang Z, et al. Chemical Engineering Research and Design, 2016, 111, 253.
38 Salma A, Thoröe-Boveleth S, Schmidt T C, et al. Journal of Hazardous Materials, 2016, 313, 49.
39 Černigoj U, Štangar U L, Trebše P, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 201(2), 142.
40 Leandri V, Gardner J M, Jonsson M. The Journal of Physical Chemistry C, 2019, 123(11), 6667.
41 Li X, Kang B, Dong F, et al. Nano Energy, 2021, 81, 105671.
42 Su Y, Chen P, Wang F, et al. RSC Advances, 2017, 7(54), 34096.
[1] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[2] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[3] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[4] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[5] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[6] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[7] 殷卫峰, 曾耀德, 杨中强, 张记明, 刘锐, 霍翠, 颜善银. 液晶高分子聚合物的类型、加工、应用综述[J]. 材料导报, 2022, 36(Z1): 21100214-5.
[8] 李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
[9] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[10] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[11] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[12] 张仲, 吕晓仁, 于鹤龙, 徐滨士. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 20110101-8.
[13] 李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
[14] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[15] 李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 20120031-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed