Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21060249-5    
  无机非金属及其复合材料 |
光催化氧化铝泡沫陶瓷的制备及性能
帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳
贵州师范大学材料与建筑工程学院,贵阳 550025
Preparation and Properties of Photocatalytic Alumina Foam Ceramics
SHUAI Shuyi, LI Jing, HE Ting, CHEN Qin, CHEN Lu, LI Yang
School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
下载:  全 文 ( PDF ) ( 9248KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用钛溶胶浸渍氧化铝泡沫陶瓷,然后通过凝胶化与煅烧工序制备了表层负载锐钛矿纳米二氧化钛的光催化泡沫陶瓷,考察了钛溶胶浓度对光催化泡沫陶瓷负载增重率、微观形貌、物相结构和光催化性能的影响。结果表明:纳米二氧化钛在泡沫陶瓷上的负载量随钛溶胶浓度的降低而减小,负载增重率从钛溶胶浓度0.565 mol/L的3.07%降低至0.294 mol/L的0.48%;高浓度钛溶胶浸渍造成负载层开裂,低浓度浸渍造成负载层不完整,当钛溶胶浓度为0.334 mol/L时,光催化泡沫陶瓷负载层的微观形貌光滑致密无裂纹,光催化降解性能最佳,在紫外光条件下照射9 h,其对罗丹明B的降解率达99.5%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
帅树乙
李婧
何婷
陈琴
陈璐
黎阳
关键词:  溶胶-凝胶  纳米二氧化钛  氧化铝泡沫陶瓷  罗丹明B  光催化降解率    
Abstract: Photocatalytic alumina foam ceramics with anatase nano TiO2 loading layer were successfully prepared by process of dipping, gelation and sintering with titanium sol as dipping slurry and alumina foam ceramics as substrate. And the effects of titanium sol concentration on the loading weight gain rate, microscopic morphology, phase structure and photocatalytic degradation properties of the photocatalytic foam ceramics were investigated. Results showed that the loading gain rate of nano-TiO2 on the foam ceramics decreased with the titanium sol concentration. When the concentration of titanium sol decreased from 0.565 mol/L to 0.294 mol/L, the loading weight gain rate decreased from 3.07% to 0.48%. Meanwhile, high concentration of titanium sol impregnation would cause the loading layer cracked. However, the loading layer was incomplete under low concentration dipping. The microscopic morphology of the photocatalytic foam ceramics was dense and without any cracks at 0.334 mol/L. At the same time, the foam ceramics had the optimal photocatalytic performance. The degradation rate of rhodamine B was about 99.5% under UV irradiation for 9 h.
Key words:  sol-gel    nano-TiO2    Al2O3 foam ceramic    rhodamine B    photocatalytic degradation rate
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TB321  
基金资助: 贵阳市科技计划项目(筑科合同[2020]-4-2号);贵州省科技计划项目(黔科合基础[2020]1Y206)
通讯作者:  liyang3300@163.com   
作者简介:  帅树乙,贵州师范大学材料与工程学院硕士研究生,师从黎阳教授。研究方向为光催化纳米材料的制备与应用。
黎阳,贵州师范大学教授、硕士研究生导师。2013年获得重庆大学工学博士学位。主要研究方向为先进陶瓷材料、纳米光催化剂、石墨烯复合物、陶瓷膜、耐火材料等。在国内外重要期刊发表文章52余篇,授权专利10余项。
引用本文:    
帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
SHUAI Shuyi, LI Jing, HE Ting, CHEN Qin, CHEN Lu, LI Yang. Preparation and Properties of Photocatalytic Alumina Foam Ceramics. Materials Reports, 2022, 36(Z1): 21060249-5.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21060249
1 Alzahrani S, Mohammad A W. Journal of Water Process Engineering, 2014, (4), 107.
2 Parham H, Saeed S. Journal of Environmental Chemical Engineering, 2013, 1(4), 1117.
3 Muggli D S, Keyser S A, Falconer J L. Catalysis Letters, 1998, 55(3-4), 129.
4 Mayer B K, Johnson C, Yang Y, et al. Chemosphere, 2019, 217, 111.
5 姜建辉, 邓臣强, 曹钰, 等. 硅酸盐学报, 2019, 47(7), 942.
6 田传进, 赵文燕, 陈雅楠, 等. 硅酸盐学报, 2019, 47(12), 1711.
7 李瑶, 彭同江, 孙红娟, 等. 硅酸盐学报, 2019, 47(4), 480.
8 祝思频, 王春英, 王俊蔚, 等. 硅酸盐学报, 2017, 45(10), 1495.
9 Fujishima A, Honda K. Nature, 1972, 238(5358), 37.
10 Chen X, Mao S S. Cheminform, 2007, 38(7), 2891.
11 Liu N, Chen X, Zhang J, et al. Catalysis Today, 2014, 225, 34.
12 Fu G, Vary P S, Lin C T. The Journal of Physical Chemistry B, 2005, 109(18), 8889.
13 Yun S C, Park S B, Kang D W. Materials Chemistry & Physics, 2004, 86(2-3), 375.
14 Wu D, F Mao, Yang Z, et al. Materials Science in Semiconductor Proce-ssing, 2014, 23, 72.
15 周武艺,张世英,唐绍裘. 硅酸盐学报, 2007, 35(10), 1332.
16 慕楠, 刘艳改, 惠壮, 等. 硅酸盐学报, 2020, 48(9), 1460.
17 郑会奇,陈晋,赵杨, 等. 硅酸盐学报, 2020, 48(5), 723.
18 刘斌智, 滕冰洁, 谢力, 等. 化学与生物工程, 2016, 33(9), 42.
19 孙艳娟,王瑞,王董帆,等. 环境科学学报, 2017,37(6), 2265.
20 Mackie J C, Doolan K R. International Journal of Chemical Kinetics, 1984, 16(5), 525.
21 雷绒绒, 朱亮, 沙作良, 等. 中国抗生素杂志, 2014, 39(6), 451.
[1] 刘明浩, 宋武林, 卢照, 李明辉. 纳米二氧化钛固相载体研究进展[J]. 材料导报, 2021, 35(9): 9108-9114.
[2] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[3] 贾玉娜, 梁可可, 焦秀玲, 陈代荣, 张剑, 吕毅, 赵英民. Al2O3-SiO2-B2O3连续纤维的制备及力学性能[J]. 材料导报, 2021, 35(14): 14025-14029.
[4] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[5] 胡玉林, 李永进, 谢燕春, 阳生红, 张曰理. 掺Ni铁酸铋纳米粉的制备及光催化性能[J]. 材料导报, 2020, 34(18): 18009-18013.
[6] 李玉佩, 王晓静, 赵君, 胡秋月, 王利勇, 成永强. 零维/二维Bi2S3/g-C3N4异质结的原位构建及光催化性能[J]. 材料导报, 2020, 34(15): 15033-15038.
[7] 于晓晨, 党快乐, 宋泽钰, 李华健, 曹欣, 吴俊, 樊继斌, 段理, 赵鹏. 一步溶剂热法合成高催化性能的Gd3+掺杂氧化锌纳米晶体[J]. 材料导报, 2020, 34(14): 14003-14008.
[8] 胡文宇, 王笑乙, 袁欢, 刘禹彤, 陈雨, 张秋平, 张嘉羲, 罗凯怡, 李靖, 徐明. Ag沉积CuO-ZnO纳米复合材料的溶胶-凝胶合成及光催化性能研究[J]. 材料导报, 2020, 34(10): 10018-10023.
[9] 王海风, 王若轩, 董云谷, 刘鑫. 溶胶-凝胶法制备Eun+x∶SiO2薄膜及其性能研究[J]. 材料导报, 2019, 33(Z2): 165-168.
[10] 杨立, 汪鹏生, 张浩, 王丰, 杨雄刚, 冯江涛, 华堃池, 胡永成. 生物活性玻璃骨材料力学性能及成骨作用改性的研究进展[J]. 材料导报, 2019, 33(Z2): 553-558.
[11] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[12] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[13] 林思宇, 曾春梅. 助催化剂NiCoP修饰改性增强半导体TiO2的光催化性能[J]. 材料导报, 2019, 33(24): 4046-4050.
[14] 林昇华, 张景, 艾玲, 鲁越晖, 王林军, 宋伟杰. 光伏玻璃减反射膜的研究进展[J]. 材料导报, 2019, 33(21): 3588-3595.
[15] 周亚,李萍,左迎峰,袁光明,李贤军,吴义强. 无机质增强木材研究进展与发展趋势[J]. 材料导报, 2019, 33(17): 2989-2996.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed