Please wait a minute...
材料导报  2019, Vol. 33 Issue (21): 3588-3595    https://doi.org/10.11896/cldb.18080062
  无机非金属及其复合材料 |
光伏玻璃减反射膜的研究进展
林昇华1,2, 张景2, 艾玲2, 鲁越晖2, 王林军1, 宋伟杰2,3
1 上海大学材料科学与工程学院, 上海 200444
2 中国科学院宁波材料技术与工程研究所,宁波 315201
3 江苏省光伏科学与工程协同创新中心,常州213164
Advances in Antireflection Coatings on Photovoltaic Glass
LIN Shenghua1,2, ZHANG Jing2, AI Ling2, LU Yuehui2, WANG Linjun1, SONG Weijie2,3
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444
2 Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201
3 Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou 213164
下载:  全 文 ( PDF ) ( 12807KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 典型的商业化太阳能电池组件封装结构由光伏玻璃、胶膜、电池片、背膜等部分组成,由于光伏封装玻璃与空气之间存在界面,会带来约4%的太阳光反射,这部分太阳光无法参与到光电转换过程中,造成了一定的光损耗。减反射膜可以有效地抑制由于界面存在折射率差而导致的光反射损耗,因此,在光伏组件中普遍需要在光伏玻璃表面镀减反射膜,这具有重要的现实意义和巨大的经济价值。
    然而,由于太阳光的宽谱特性,光伏组件面临着严苛的户外环境使用要求,这需要光伏玻璃减反射膜不仅具有较好的减反增透特性,还需在复杂环境下保持稳定,并且符合光伏产业大面积、低成本、均匀成膜的技术要求。事实上,实现兼具以上特性的减反射膜材料制备和镀膜是极具挑战的。与玻璃衬底折射率匹配的减反射膜需要具有极低的折射率(低于自然界中天然材料的折射率),为了获得这种超低折射率需要在材料中引入一定比例的孔隙结构,而这与所要求的严苛环境下材料的稳定性存在矛盾。因此,光伏玻璃减反射膜研究除追求优异的光学特性外,维持其在复杂气候条件下的稳定性也至关重要,减反射膜耐候性、机械强度以及多功能特性(如自清洁、防尘抗污和防潮等)增强方面的探索都成为主要研究课题。
    在光学特性方面,利用仿生折射率渐变结构提升减反射膜的宽光谱、广角减反特性研究已取得了一系列进展。而在光伏产业中,基于光学特性、稳定性和制造成本的考虑普遍采用溶胶-凝胶二氧化硅单层减反体系,相比于传统的纳米实心二氧化硅颗粒制备的多孔二氧化硅减反射膜,新型介孔二氧化硅和具有封闭孔隙结构的空心二氧化硅减反射膜体现出更好的耐候性和机械强度,同时维持了所需的孔隙率,保持了较好的减反增透特性。此外,为了应对在不同气候环境下的长期应用需求,研究者们进行了一些二氧化硅减反射膜自清洁和防尘抗污等多功能改性方面的探索,但目前在实现同时具有优异的光学特性、较高的力学性能和长效的耐候性的多功能减反射膜方面仍存在较大挑战。
    本文归纳了光伏玻璃减反射膜的研究进展,从减反射膜的基本概念、原理出发,介绍了针对光伏玻璃减反射膜的特定评价方法,并围绕当前光伏产业中普遍采用的溶胶-凝胶二氧化硅单层减反射膜制备技术进一步对具有三类不同孔隙结构的二氧化硅减反射膜体系进行了介绍,分析了光伏玻璃减反射膜所面临的问题并对其发展趋势进行了展望,以期为制备减反增透特性更优异、在极端环境下更稳定和具有更丰富表面功能特性的新型光伏玻璃减反射膜提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林昇华
张景
艾玲
鲁越晖
王林军
宋伟杰
关键词:  减反射膜  光伏玻璃  溶胶-凝胶  改性    
Abstract: Typical commercial PV modules are composed of PV glass, EVA, solar cells, back reflectors, and so forth. Due to the interfacial reflection between PV glass and air, a portion of sunlight, around 4%, is reflected, which cannot take part in the optoelectronic conversion, resulting in a certain of light loss. Antireflection coatings (ARCs) can effectively suppress the loss caused by the interfacial reflection. To some extent, it is necessary to fabricate ARCs on the surface of PV glass in PV modules, which is of great significance for practice and economy.
    However, ARCs have to possess an improved transmittance and a good stability under harsh environments since the solar irradiance covers a broad spectral range and PV modules are applied outdoors. On the other hand, it is necessary that ARCs should be prepared in large-area and low-cost due to the demand from PV industry. In fact, fulfilling the aforementioned requests simultaneously is highly challenging. The refractive index of ARCs on PV glass should be low for impedance matching, which is lower than that of materials in nature. For achieving the low refractive index, a certain of porosity is introduced, but it conflicts with the demanding stability. It implied that the stability of ARCs under harsh environments is of great importance besides excellent optical properties. The studies on improvements in durability, mechanical strength, and multi-functiona-lities of ARCs, such as self-cleaning, anti-dust and humidity-resistant properties, have attracted much attention.
    Concerning the optical properties, the bio-inspiredgraded-refractive-index ARCs exhibited broadband and omnidirectional antireflection. In the PV industry, the sol-gel silica single-layered ARCs are usually applied considering optical properties, stability, and manufacturing cost. Compared with conventional porous silica ARCs, consisting of solid silica nanoparticles, novel mesoporous and hollow silica ARCs with meso-sized and closed pores respectively, posses better durability and mechanical strength while preserving good antireflection. Besides, for long-term application under various environments, many efforts have been made on multi-functional self-cleaning, anti-dust, and anti-soiling ARCs via chemical modification, though the simultaneous realization of excellent optical, mechanical, and long-term durability is highly challenging so far.
    This review offers a retrospection of the research efforts with respect to ARCs on PV glass, and provides an introduction on the concepts, fundamentals, and evaluation methods of ARCs in PV modules. We concentrate on the preparation of sol-gel silica single-layered ARCs that are usually applied in PV industry and provide the detailed descriptions on three kinds of silica ARCs with different pore structures. We point out the challenges that state-of-the-art ARCs face and provide a perspective for achieving novel ARCs with better antireflection, stability, and versatile surface functionalities.
Key words:  antireflection coatings    photovoltaic glass    sol-gel    modification
               出版日期:  2019-11-10      发布日期:  2019-09-12
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(61574144;61605224);浙江省自然科学基金(LY17A040004);宁波市自然科学基金(2017A610021)
作者简介:  林昇华,2016年6月毕业于中国矿业大学(徐州),获得材料科学与工程学士学位。现为上海大学与中国科学院宁波材料技术与工程研究所联合培养的硕士研究生,在王林军教授和鲁越晖研究员的指导下进行研究。目前从事溶胶-凝胶纳米压印微纳结构制备及其光热协同特性调控研究。
    鲁越晖,2009年毕业于韩国汉阳大学物理专业,获理学博士学位。现任中国科学院宁波材料技术与工程研究所研究员、博士生导师。2012年入选宁波市领军拔尖人才培养工程,2013年入选浙江省钱江人才计划。当前主要从事溶胶-凝胶光伏玻璃减反射多功能涂层、太阳电池微纳光热协同管理及超异材料被动辐射制冷等研究领域。近年来,先后承担国家自然科学基金和省部级项目10余项,其中主持国家自然科学基金3项,发表SCI检索学术论文30余篇,申报发明专利10余项,其中已授权4项。
    王林军,1997年毕业于上海大学半导体物理与器件物理专业,获理学硕士学位,2002年毕业于上海大学材料学院材料学专业,获工学博士学位。现任上海大学材料学院教授、博士生导师、常务副院长,上海市新材料协会副会长、中国电子学会电子材料专业委员会委员、中国真空学会电子材料与元器件专业委员会委员、上海金属学会半导体材料专业委员会委员。上海市育才奖、上海市高校优秀青年教师、“宝钢优秀教师”、上海市启明星计划、“Intel优秀教师”获得者。主要从事宽禁带半导体材料(金刚石薄膜、ZnO薄膜、CdZnTe晶体与薄膜)与器件、光电器件的设计和工艺、光伏材料与器件等研究领域。近年来,先后承担国家自然科学基金和省部级项目20余项,其中主持国家自然科学基金5项,发表SCI检索学术论文200余篇,申报发明专利60项,其中已授权21项。
引用本文:    
林昇华, 张景, 艾玲, 鲁越晖, 王林军, 宋伟杰. 光伏玻璃减反射膜的研究进展[J]. 材料导报, 2019, 33(21): 3588-3595.
LIN Shenghua, ZHANG Jing, AI Ling, LU Yuehui, WANG Linjun, SONG Weijie. Advances in Antireflection Coatings on Photovoltaic Glass. Materials Reports, 2019, 33(21): 3588-3595.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18080062  或          http://www.mater-rep.com/CN/Y2019/V33/I21/3588
1 Shang A, Li X. Advanced Materials, 2017, 29(8),1603492.
2 Green M A, Bremner S P.Nature Materials, 2016, 16(1),23.
3 Polman A, Knight M, Garnett E C, et al.Science, 2016, 352(6283),aad4424.
4 Li X, Bi D Q, Yi C Y, et al. Science, 2016, 353(6294),58.
5 Saliba M, Matsui T, Seo J Y, et al.Energy & Environmental Science,
2016, 9(6),1989.
6 Service R F.Science, 2016, 354(6317),1214.
7 Green M A.Nature Energy, 2016, 1(1),15015.
8 Zhou Z Z, Wu Z, Feng K P.Materials Review A:Review Papers,2015, 29(5),55(in Chinese).
周兆忠, 吴喆, 冯凯萍. 材料导报:综述篇, 2015, 29(5),55.
9 Yong S K, Walsh T M, Fei L, et al.Solar Energy Materials and Solar Cells, 2012, 102(3),153.
10 Starowicz Z, Drabczyk K, Gawlinska K, et al.Metrology and Measurement Systems, 2018, 25(1),203.
11 Liu L Q, Wang X L, Jing M, et al.Advanced Materials, 2012, 24(47),6318.
12 Raut H K, Ganesh V A, Nair A S, et al.Energy & Environmental Science, 2011, 4(10),3779.
13 Yao L, He J H.Progress in Materials Science, 2014, 61,94.
14 Chattopadhyay S, Huang Y F, Jen Y J, et al.Materials Science and Engineering R, 2010, 69(13),1.
15 Mazur M, Wojcieszak D, Kaczmarek D, et al.Applied Surface Science, 2016, 380,165.
16 Lu Y H, Zhang X P, Huang J H, et al.Optik-International Journal for Light and Electron Optics, 2013, 124(18),3392.
17 Mazur M, Wojcieszak D, Domaradzki J, et al.Opto-electronics Review, 2013, 21(2),233.
18 Li J, Lu Y H, Lan P J, et al.Solar Energy, 2013, 89,134.
19 Li J , Lan P J, Xu H, et al. Journal of Applied Physics, 2012, 112(9),093517.
20 Xiao B , Xia B B, Lv H B, et al.Journal of Sol-Gel Science and Technology, 2012, 64(2),276.
21 Ye L Q, Zhang Y L, Zhang X X, et al.Solar Energy Materials and Solar Cells, 2013, 111,160.
22 Zhang Y, Gao F M, Gao L H, et al.Journal of Sol-Gel Science and Technology, 2012, 62(2),134.
23 Carnegie M R, Sherine A, Sivagami D, et al.Journal of Sol-Gel Science and Technology, 2015, 78(1),176.
24 Rayleigh L.Proceedings of the London Mathematical Society, 1879, s1-11(1),51.
25 Zhao Y X, Chen F, Shen Q, et al.Progress in Electromagnetics Research, 2014, 145,39.
26 Xi J Q, Schubert M F, Kim J K, et al.Nature Photonics, 2007, 1(3),176.
27 Sun C H, Jiang P, Jiang B. Applied Physics Letters, 2008, 92(6),061112.
28 Heo S Y, Koh J K, Kang G, et al.Advanced Energy Materials, 2014, 4(3),1300632.
29 Chen L, Wang Q K, Chen W, et al.Solar Energy, 2018, 163,519.
30 Kim D H, Dudem B, Jung J W, et al.ACS Applied Materials & Interfaces, 2018, 10(15),13113.
31 Aydin C, Zaslavsky A, Sonek G J, et al. Applied Physics Letters, 2002, 80(13),2242.
32 Toma M, Loget G, Corn R M.Nano Letters, 2013, 13(12),6164.
33 Dudem B, Heo J H, Leem J W, et al.Journal of Materials Chemistry A, 2016, 4(20),7573.
34 Peng Y J , Huang H X, Xie H.Solar Energy Materials and Solar Cells, 2017, 171,98.
35 Manzoor S, Yu Z J, Ali A, et al.Solar Energy Materials and Solar Cells, 2017, 173,59.
36 Min W L, Jiang B, Jiang P.Advanced Materials, 2008, 20(20),3914.
37 Mu Q H, Li Y G, Wang H Z, et al.Journal of Colloid and Interface Science, 2012, 365(1),308.
38 Wang X X, Yang Z H, Gao P Q, et al.Optics Express, 2017, 25(9),10464.
39 Lu Y H, Chen Z C, Ai L, et al.Solar RRL, 2017, 1(10),1700084.
40 Liu L, Cao Y, He J H,et al. Progress in Chemistry,2013,25(2-3),248(in Chinese).
刘莉, 曹摇, 贺军辉, 等. 化学进展, 2013,25(2-3),248.
41 Shin J H, Kim Y D, Choi H J, et al.Solar Energy Materials and Solar Cells, 2014, 126,1.
42 Kuo M L, Poxson D J, Kim Y S, et al.Optics Letters, 2008, 33(21),2527.
43 Van de Groep J, Spinelli P, Polman A.Nano Letters, 2015, 15(6),4223.
44 Choi K, Yoon Y, Jung J, et al.Advanced Optical Materials, 2017, 5(3),1600616.
45 Wang Y, He M Y, Chen R Y. Journal of Materials Chemistry A, 2015, 3(4),1609.
46 Yang Z Y, Zhu D Q, Lu D S, et al.Optical and Quantum Electronics, 2003, 35(12),1133.
47 Buskens P, Burghoorn M, Mourad M C D, et al. Langmuir, 2016, 32(27),6781.
48 Zhang J. Preparation and functionalization of hollow silica nanosphere antireflection coatings towards photovoltaic applications.Ph.D. Thesis, University of Chinese Academy of Sciences, China, 2018 (in Chinese).
张景. 光伏用空心球 SiO2减反射膜的制备及其功能化研究. 博士学位论文, 中国科学院大学, 2018.
49 Fujihara S, Tada M, Kimura T.Journal of Sol-Gel Science and Technology, 2000, 19(1-3), 311.
50 Fujihara S,Kadota Y, Kimura T. Journal of Sol-Gel Science and Technology, 2002, 24(2), 147.
51 Yang H H, Park G C.Transactions on Electrical and Electronic Materials, 2010, 11(1), 33.
52 Scheurell K, Noack J, Konig R, et al.Dalton Transactions, 2015, 44(45),19501.
53 Moghal J, Kobler J, Sauer J, et al.ACS Applied Materials & Interfaces, 2012, 4(2), 854.
54 Löbmann P.Nanomaterials, 2018, 8(5),1.
55 Vicente G S, Bayón R, Germán N, et al.Thin Solid Films, 2009 , 517 (10),3157.
56 Moulton H R.U.S. patent application, US2531945, 1950.
57 Stöber W, Fink A, Bohn E. Journal of Colloid Interface Science, 1968, 26,62.
58 Thomas I M.Applied Optics, 1992, 31(28), 6145.
59 Ye L Q, Zhang S M, Wang Q, et al.RSC Advances, 2014, 4(67), 35818.
60 Sun J H, Zhang Q H, Ding R M, et al.Physical Chemistry Chemical Physics, 2014, 16(31), 16684.
61 Guillemot F, Brunet-Bruneau A, Bourgeat-Lami E, et al.Chemistry of Materials, 2010, 22(9), 2822.
62 Du Y, Luna L E, Tan W S, et al.ACS Nano, 2010, 4(7), 4308.
63 Gao T, Jelle B P, et al. Applied Physics A, 2012, 110(1), 65.
64 Zhang X P, Lan P J, Lu Y H, et al.ACS Applied Materials & Interfaces, 2014, 6(3), 1415.
65 Hanaei H, Assadi M K, Saidur R.Renewable and Sustainable Energy Reviews, 2016, 59, 620.
66 Zhang D, Wang L, Qian H, et al. Journal of Coatings Technology and Research, 2015, 13(1), 11.
67 Zhang Z, Ge B, Men X, et al.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 490, 182.
68 Li T, He J H.Solar Energy Materials and Solar Cells, 2017, 170, 95.
69 Li T, He J H.Journal of Materials Chemistry C, 2016, 4(23), 5342.
70 Li X, Ai L, Zhang J,et al. Progress in Chemistry, 2018,30(6), 864(in Chinese).
李啸, 艾玲, 张景, 等. 化学进展, 2018, 30(6), 864.
71 Guo Z, Liu W, Su B L.Journal of Colloid and Interface Science, 2011, 353(2), 335.
72 Howarter J A, Youngblood J P.Macromolecular Rapid Communications, 2008, 29(6), 455.
73 Lai Y, Tang Y, Gong J, et al.Journal of Materials Chemistry, 2012, 22(15), 7420.
74 Xu L, He J.ACS Applied Materials & Interfaces, 2012, 4(6), 3293.
75 Gao L, Lu Y, Li J, et al.Holzforschung, 2015, 70(1), 1.
76 Chen Y T, Ma L, Yue Y, et al.Solar Energy Materials and Solar Cells, 2018, 179, 247.
77 Sun M, Luo C, Xu L, et al. Langmuir, 2005, 21(19), 8978.
78 Gao L, He J.Journal of Colloid and Interface Science, 2013, 400, 24.
79 Qu M N, Hou L G, He J M, et al. Progress in Chemistry, 2016, 28(12), 1774(in Chinese).
屈孟男, 侯琳刚, 何金梅,等.化学进展, 2016,28(12), 1774.
80 Niu Y Y, Wang X D, Yao L F, et al. Journal of Inorganic Materials, 2016, 31(5), 499(in Chinese).
牛彦彦, 王晓栋, 姚兰芳, 等. 无机材料学报, 2016, 31(5), 499.
81 Xue C H, Jia S T, Zhang J, et al.Science and Technology of Advanced Materials, 2010, 11(3), 033002.
82 Bao L, Ji Z, Wang H, et al.Langmuir, 2017, 33(25), 6240.
83 Si F F, Zhang L, Zhao N,et al. Progress in Chemistry, 2011, 23(9), 1831(in Chinese).
斯芳芳, 张靓, 赵宁, 等. 化学进展, 2011,23(9), 1831.
84 Rico V, Romero P, Hueso J L, et al. Catalysis Today, 2009, 143(3-4), 347.
85 Liu Z Y, Zhang X T, Murakami T, et al.Solar Energy Materials and Solar Cells, 2008, 92(11), 1434.
86 Cai J G, Ye J F, Chen S Y, et al.Energy & Environmental Science, 2012, 5(6), 7575.
87 Faustini M, Nicole L, Boissiere C, et al.Chemistry of Materials, 2010, 22(15), 4406.
88 Yao L, He J H, Geng Z, et al.Nanoscale, 2015, 7(30), 13125.
89 Sayyah A, Horenstein M N, Mazumder M K.Solar Energy, 2014, 107, 576.
90 Ghazi S, Sayigh A, Ip K.Renewable and Sustainable Energy Reviews, 2014, 33, 742.
91 Nabemoto K, Sakurada Y, Ota Y, et al.Japanese Journal of Applied Phy-sics, 2012, 51(10), 10ND11.
92 Sueto T, Ota Y, Nishioka K. Solar Energy, 2013, 97, 414.
93 Hirohata T, Ota Y, Nishioka K.Applied Mechanics and Materials, 2013, 372,575.
94 Hirohata T, Ota Y, Nishioka K.Japanese Journal of Applied Physics, 2015, 54(8),08KE09.
95 Glaubitt W, Löbmann P. Journal of Sol-Gel Science and Technology, 2011, 59(2),239.
96 Bahattab M A, Alhomoudi I A, Alhussaini M I, et al.Solar Energy Materials and Solar Cells, 2016, 157,422.
[1] 柴凡超, 常树全, 王国辉, 姚初请, 戴耀东. 辐射改性对铅/铜高分子辐射屏蔽材料性能的影响[J]. 材料导报, 2019, 33(z1): 444-447.
[2] 关文学, 周键, 王三反, 李艳红. 等离子体技术接枝苯磺酸甜菜碱改性对离子交换膜电阻的影响[J]. 材料导报, 2019, 33(z1): 462-465.
[3] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[4] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[5] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[6] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[7] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[8] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[9] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[10] 刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
[11] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[12] 金鑫, 郭乃胜, 尤占平, 谭忆秋. 聚氨酯改性沥青研究现状及发展趋势[J]. 材料导报, 2019, 33(21): 3686-3694.
[13] 张超凡, 管学茂, 张海波, 勾密峰, 胡恩立, 王恒. 机械力化学改性钙基膨润土提高注浆材料的稳定性[J]. 材料导报, 2019, 33(20): 3408-3412.
[14] 许世鸣, 张小锋, 刘敏, 邓春明, 邓畅光, 牛少鹏. APS制备7YSZ热障涂层镀铝改性的抗氧化性[J]. 材料导报, 2019, 33(2): 283-287.
[15] 何海峰,寇新秀,吕海亮,白瑞钦,刘欣,靳涛. 聚酰胺胺改性纳米二氧化硅的研究进展[J]. 材料导报, 2019, 33(17): 2882-2889.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed