Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 21080083-7    https://doi.org/10.11896/cldb.21080083
  表面工程材料与技术 |
冷喷涂铜基复合涂层摩擦学性能研究进展与展望
陈文元1, 谈辉1, 程军1, 朱圣宇1,2, 杨军1,2
1 中国科学院兰州化学物理研究所固体润滑国家重点实验室,兰州 730000
2 中国科学院大学材料科学与光电技术学院,北京 100049
Research Progress and Prospect of Tribological Properties of Cold Sprayed Copper-based Composite Coatings
CHEN Wenyuan1, TAN Hui1, CHENG Jun1, ZHU Shengyu1,2, YANG Jun1,2
1 State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2 College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 3335KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铜基复合涂层因其良好的导热、导电、耐腐蚀与耐磨损性能在轨道交通、海洋船舶及冶金化工等领域获得了广泛应用。粉末冶金、热喷涂及电镀等主要涂层制备技术存在制备温度高、基底热损伤严重及涂层内应力高等缺点,这严重限制了铜基复合涂层的发展与性能提升;而冷喷涂技术能克服以上缺点,可为具有良好力学与摩擦学性能铜基复合涂层的制备与应用提供新思路。
然而,目前冷喷涂涂层制备过程中存在的硬质颗粒增强相与无机润滑相难沉积及其与基体间较弱的界面结合等问题,这些问题会对具有良好力学与摩擦学性能冷喷涂铜基复合涂层的设计与制备产生不利影响。因此,如何实现具有高致密度、低磨损与耐腐蚀冷喷涂铜基复合涂层的组分、结构设计与制备,将成为今后冷喷涂铜基复合涂层摩擦学性能研究的热点与难点。
在研究冷喷涂铜基复合涂层制备及其摩擦学性能的过程中,研究人员通过金属包覆粉末与机械球磨等方法实现了硬质颗粒与无机固体润滑剂粉末在涂层基体中的有效沉积。此外,热处理、激光重熔及搅拌摩擦焊等涂层后处理工艺对改善冷喷涂铜基复合涂层的塑性及其内部颗粒的界面结合起到了积极作用,有望实现冷喷涂铜基复合涂层微观结构、力学性能与摩擦学性能的协同优化。
本文综述了冷喷涂铜基复合涂层的摩擦学性能的研究现状及发展前景,总结了冷喷涂技术及其涂层沉积原理、冷喷涂铜基复合涂层摩擦学性能的研究进展及涂层后处理工艺等对涂层结构与性能的影响,以期为相关摩擦磨损的冷喷涂铜基复合涂层的设计、制备与应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈文元
谈辉
程军
朱圣宇
杨军
关键词:  冷喷涂  铜基复合涂层  摩擦  磨损  润滑    
Abstract: Copper-based composite coatings have been widely used in vital fields such as rail transportation, marine ships, metallurgy and chemical industry because of their good thermal and electrical conductivity, corrosion resistance and anti-wear property. The main coating deposition methods of powder metallurgy, thermal spraying and electroplating have the disadvantages of high preparation temperature, substrate thermal damage and high internal stress, which seriously limit the development and performance enhancement of the copper-based composite coatings. Cold spraying can solve the above problems and provide a new method for the preparation and application of the copper-based composite coating with good mechanical and tribological properties.
However,at present, for the cold spraying, the hard particle reinforcement phase and inorganic lubrication phase are difficult to deposit and their interfaces with the matrix are weak. These shortages have adverse effects on the design and preparation of the cold sprayed copper-based composite coatings with good mechanical and tribological properties. Therefore, how to achieve design of the composition and structure, and preparation of cold sprayed copper-based composite coatings with the high density, low wear and corrosive resistance, become the focus and difficulty of the research on the tribological properties of cold sprayed copper-based composite coatings in the future.
In the process of cold sprayed copper-based composite coating preparation and the studies of its tribological properties, the researchers realized the effective deposition of hard particles and inorganic solid lubricants by means of the metal coated powders and mechanical ball milling. In addition, heat treatment, laser remelting and friction stir welding play a positive role in improving the plasticity and the particle interface bonding of cold sprayed copper-based composite coatings, which is expected to achieve the synergistic optimization of microstructure, mechanical and tribological properties of the coatings.
In this paper, the research status and development prospect of thetribological properties of cold sprayed copper-based composite coatings are reviewed. The development of cold spraying and the principle of the coating deposition are provided. The research progress of the tribological properties and the influence of post-treatment technology on the structure and properties of the coatings are summarized. It is expected to be useful for the design, preparation and application of cold sprayed copper-based composite coatings that related to friction and wear.
Key words:  cold spraying    copper-based composite coating    friction    wear    lubrication
发布日期:  2022-04-07
ZTFLH:  TH117.1  
基金资助: 国家重点研发计划项目(2018YFB0703803);国家自然科学基金(51835012;51975558);中国科学院“西部之光”项目
通讯作者:  jyang@licp.cas.cn   
作者简介:  陈文元,2020年7月在中国科学院兰州化学物理研究所获得材料学博士学位,现为兰州化学物理研究所固体润滑国家重点实验室助理研究员,主要从事冷喷涂铜基自润滑涂层的制备及其摩擦学性能的研究。
杨军,固体润滑国家重点实验室副主任、研究员、博士研究生导师。长期从事高温摩擦学的基础理论及相关应用的研究。发表SCI收录论文200多篇,授权中国发明专利36项。获甘肃省技术发明一等奖1项、甘肃省自然科学二等奖1项。
引用本文:    
陈文元, 谈辉, 程军, 朱圣宇, 杨军. 冷喷涂铜基复合涂层摩擦学性能研究进展与展望[J]. 材料导报, 2022, 36(7): 21080083-7.
CHEN Wenyuan, TAN Hui, CHENG Jun, ZHU Shengyu, YANG Jun. Research Progress and Prospect of Tribological Properties of Cold Sprayed Copper-based Composite Coatings. Materials Reports, 2022, 36(7): 21080083-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080083  或          http://www.mater-rep.com/CN/Y2022/V36/I7/21080083
1 Liu Y N, Wang Y P, Zhu R F, et al. Materials for Mechanical Enginee-ring, 2021, 45(1), 1(in Chinese).
刘宇宁, 王云鹏, 祝儒飞, 等. 机械工程材料, 2021, 45(1), 1.
2 Lei Q, Yang Y H, Xiao Z, et al. Materials Reports, 2021, 35(15), 15153(in Chinese).
雷前, 杨一海, 肖柱, 等. 材料导报, 2021, 35(15), 15153.
3 Cui G J, Bi Q L, Zhu S Y, et al. Tribology International,2012,53,76.
4 Scharf T W, Prasad S V. Journal of Materials Science, 2013, 48, 511.
5 Chen Y Q, Yu M, Cao K, et al. Surface Technology, 2021, 50(2), 91(in Chinese).
陈雨晴, 余敏, 曹开, 等. 表面技术, 2021, 50(2), 91.
6 Champagne V, Helfritch D. International Materials Reviews, 2016, 61(7), 437.
7 Li W Y, Assadi H, Gaertner F, et al. Critical Reviews in Solid State and Materials Sciences, 2018, 44(2), 109.
8 Li W Y, Yang K, Yin S, et al. Journal of Materials Science & Techno-logy, 2018, 34(3), 440.
9 Liang X B, Zhou Z D, Zhang Z B, et al. Materials Reports, 2021, 35(1), 1003(in Chinese).
梁秀兵, 周志丹, 张志彬, 等. 材料导报, 2021, 35(1),1003.
10 Zhang Y Y, Descartes S, Vo P, et al. Journal of Thermal Spray Techno-logy, 2015, 25(3), 473.
11 Kang K, Park H, Kim C J, et al. Applied Surface Science, 2015, 356, 1039.
12 Winnicki M, Małachowska A, Baszczuk A, et al. Surface and Coatings Technology, 2017, 318, 90.
13 Koivuluoto H, Bolelli G, Milanti A, et al. Surface and Coatings Techno-logy, 2015, 268(25), 224.
14 Krebs S, Gärtner F, Klassen T. Journal of Thermal Spray Technology, 2014, 24(1-2), 126.
15 Moridi A, Hassani-Gangaraj S M, Guagliano M. Surface Engineering, 2014, 30(6) 369.
16 Tazegul O, Meydanoglu O, Kayali E S. Surface and Coatings Techno-logy, 2013, 236, 159.
17 Guo X P, Zhang G, Li W Y, et al. Applied Surface Science, 2007, 254(5), 1482.
18 Li C J. China Surface Engineering, 2009, 22(4), 5(in Chinese).
李长久. 中国表面工程, 2009, 22(4), 5.
19 Alkhimov A P, Kosarev V F, Papyrin A N. Soviet Physics Doklady, 1990, 35, 1047.
20 Viscusi A, Astarita A, Gatta R D, et al. Surface Engineering, 2018, 35(9) 743.
21 Assadi H, Kreye H, Gärtner F, et al. Acta Materialia, 2016, 116, 382.
22 Yin S, Cavaliere P, Aldwell B, et al. Additive Manufacturing, 2018, 21, 628.
23 Stoltenhoff T, Borchers C, Gärtner F, et al. Surface and Coatings Technology, 2006, 200, 4947.
24 Koivuluoto H, Coleman A, Murray K, et al. Journal of Thermal Spray Technology, 2012, 21(5), 1065.
25 Raoelison R N, Aubignat E, Planche M P, et al. Surface and Coatings Technology, 2016, 302, 47.
26 Olakanmi E O, Doyoyo M. Journal of Thermal Spray Technology, 2014, 23(5), 765.
27 Zhao G F, Wang Y Y, Zhang H L, et al. Surface Technology, 2017, 46(11), 198(in Chinese).
赵国峰, 王莹莹, 张海龙, 等. 表面技术,2017, 46(11), 198.
28 Assadi H, Gärtner F, Stoltenhoff T, et al. Acta Materialia, 2003, 51, 4379.
29 Grujicic M, Zhao C L, DeRosset W S, et al. Materials & Design, 2004, 25, 681.
30 Zhao Z P, Tang J R, Du H, et al. Materials Letters, 2018, 228, 246.
31 Ko K H, Choi J O, Lee H. Materials Letters, 2016, 175, 13.
32 Price T S, Shipway P H, McCartney D G, et al. Journal of Thermal Spray Technology, 2007,16(4), 566.
33 Cheng R, Luo X T, Huang G, et al. Journal of Materials Processing Technology, 2021, 296, 117231.
34 Lee C, Kim J. Journal of Thermal Spray Technology, 2015, 24(4), 592.
35 Luo X T, Li C J. Materials & Design, 2015, 83, 249.
36 Chen J, Song H, Liu G, et al. Journal of Thermal Spray Technology, 2020, 29, 1892.
37 He L, Hassani M. Journal of Thermal Spray Technology, 2020, 29, 1565.
38 Jiang Y L, Zhu H G. Materials Reports B:Research Papers, 2014, 28(1), 33(in Chinese).
蒋娅琳, 朱和国. 材料导报:研究篇, 2014, 28(1), 33.
39 Qin Y Q, Tian Y, Peng Y Q, et al. Journal of Alloys and Compounds, 2020, 848, 156475.
40 Chen W Y, Yu Y, Cheng J, et al. Journal of Thermal Spray Technology, 2018, 27(8), 1652.
41 Deng N, Tang J R, Xiong T Y, et al. Surface and Coatings Technology, 2019, 368, 8.
42 Tazegul O, Dylmishi V, Cimenoglu H. Archives of Civil and Mechanical Engineering, 2016, 16(3), 344.
43 Triantou K I, Pantelis D I, Guipont V, et al. Wear, 2015, 336-337, 96.
44 Zhang L Y, Yang S, Lyu X, et al. Journal of Thermal Spray Technology, 2019, 28(6), 1212.
45 Yin S, Xie Y C, Cizek J, et al. Composites Part B: Engineering, 2017, 113, 44.
46 Guo X P, Zhang G, Li W Y, et al. Applied Surface Science, 2009, 255(6), 3822.
47 Guo X P, Chen J, Yu H, et al. Surface and Coatings Technology, 2015, 268, 94.
48 Tang L F, Li W S, He L, et al. The Chinese Journal of Nonferrous Metals, 2019, 29(5), 931(in Chinese).
唐丽芳, 李文生, 何玲, 等. 中国有色金属学报, 2019, 29(5), 931.
49 Huang C J, Xie Y C, Li W Y, et al. Surface and Coatings Technology, 2019, 371, 211.
50 Zhang Y Y, Shockley M J, Vo P, et al. Tribology Letters, 2016, 62(9), 1.
51 Zhang Y Y, Choudhuri D, Scharf T W, et al. Materials & Design, 2019, 182, 108009.
52 Zhang Y Y, Epshteyn Y, Chromik R R. Tribology International, 2018, 123, 296.
53 Chen W Y, Yu Y, Ma J Q, et al. Journal of Thermal Spray Technology, 2019, 28(7), 1688.
54 Ling H J, Mai Y J, Li S L, et al. Surface and Coatings Technology, 2019, 364, 256.
55 Wang Y, Zhu Y Q, Li R T, et al. Journal of Thermal Spray Technology, 2021, 30(6), 1482.
56 Yin S, Zhang Z, Ekoi E J, et al. Materials Letters, 2017, 196, 172.
57 Kim H J, Lee C H, Hwang S Y. Materials Science and Engineering: A, 2005, 391(1-2), 243.
58 Liu J, Zhou X, Zheng X, et al. Applied Surface Science, 2012, 258(19), 7490.
59 Liu J, Cui H, Zhou X, et al. Metals and Materials International, 2012, 18(1), 121.
60 Wang Z, Chen X, Gong Y, et al. Surface Engineering, 2017, 34(5), 392.
61 Dzhurinskiy D, Maeva E, Leshchinsky E, et al. Journal of Thermal Spray Technology, 2012, 21(2), 304.
62 Chen W Y, Yu Y, Tieu A K, et al. Tribology International, 2020, 142, 105992.
63 Chen W Y, Yu Y, Sui X D, et al. Surface and Coatings Technology, 2020, 403, 126359.
64 Kang N, Coddet P, Liao H L, et al. Surface and Coatings Technology, 2015, 280, 64.
65 Xiao Z T, Li X B, Wang J, et al. Materials Reports A:Review Papers, 2012, 26(2), 76(in Chinese).
肖正涛, 李相波, 王 佳, 等. 材料导报:综述篇, 2012, 26(2), 76.
66 Chen Z H, Sun X F, Li Z M, et al. Surface Technology, 2017, 46(10), 161(in Chinese).
陈正涵, 孙晓峰, 李占明, 等. 表面技术, 2017, 46(10), 161.
67 Li W Y, Wu D, Hu K W, et al. Surface and Coatings Technology, 2021, 409, 126887.
[1] 张仲, 吕晓仁, 于鹤龙, 徐滨士. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 20110101-8.
[2] 朱咸勇, 丁振宇, 马国政, 朴钟宇, 付田力, 周雳, 于天阳, 郭伟玲, 王海斗. 三元MAX相层状陶瓷材料高温摩擦学性能研究进展[J]. 材料导报, 2022, 36(7): 21090166-11.
[3] 范海峰, 郭志光. 仿生超滑表面的设计与制备研究进展[J]. 材料导报, 2022, 36(7): 21110226-21.
[4] 许骏杰, 康嘉杰, 岳文, 周永宽, 朱丽娜, 付志强, 佘丁顺. 纳秒激光制备Fe基非晶合金涂层表面织构的疏水性研究[J]. 材料导报, 2022, 36(7): 21120134-6.
[5] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[6] 王好平, 张蒙祺, 莫继良. 盾构/TBM滚刀刀圈性能强化研究现状[J]. 材料导报, 2022, 36(7): 22010052-9.
[7] 李爽, 张青松, 戴光泽. 预制裂纹对等离子体淬火车轮材料磨损行为的影响[J]. 材料导报, 2022, 36(5): 20120250-7.
[8] 张倩倩, 陈冲, 张聪, 马晶博, 张程, 毛丰. 硼对高铬铸铁铸渗层组织和性能的影响[J]. 材料导报, 2022, 36(4): 20110229-7.
[9] 熊光耀, 李圣鑫, 李波, 沈明学. 面向低温环境的聚合物摩擦学性能及其改性研究进展[J]. 材料导报, 2022, 36(3): 20070001-6.
[10] 翁盛槟, 陈晶晶, 周建强, 林晓亮. 磨粒刮擦铝膜的亚表层磨损机制纳观探究[J]. 材料导报, 2022, 36(1): 20110027-7.
[11] 刘晓刚, 孙红, 刘林聪. 二维材料在摩擦机理和润滑应用方面的研究进展[J]. 材料导报, 2021, 35(z2): 33-37.
[12] 郑洋, 宿振宇, 张璇. 铝/镁异质金属搅拌摩擦焊技术研究进展[J]. 材料导报, 2021, 35(z2): 346-352.
[13] 胡学飞. 低熔点玻璃粉对水冷壁涂层组织和性能的影响[J]. 材料导报, 2021, 35(Z1): 189-194.
[14] 李博帅, 鲁金涛, 朱明, 黄锦阳, 党莹樱, 谷月峰. 镍铁基高温合金摩擦焊接接头在煤灰/烟气中的腐蚀行为[J]. 材料导报, 2021, 35(Z1): 395-401.
[15] 焦卫卫, 候春莉, 邹敏, 张海鹏. 超润滑技术的研究现状与发展方向[J]. 材料导报, 2021, 35(Z1): 476-480.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed