Please wait a minute...
材料导报  2021, Vol. 35 Issue (24): 24006-24010    https://doi.org/10.11896/cldb.20090187
  无机非金属及其复合材料 |
Na3V2(PO4)3/CN/rGO复合正极材料的构筑及储钠性能研究
汪仕杰1, 肖慧1, 任玉荣1, 黄小兵2, 王海燕3
1 常州大学材料科学与工程学院,江苏省新能源汽车动力电池制造技术工程研究中心,常州市动力电池智能制造高技术重点实验室,常州市动力电池及管理系统关键技术重点实验室,常州 213164
2 湖南文理学院化学与材料工程学院,洞庭湖生态经济区建设与发展协同创新中心,水处理功能材料湖南省重点实验室,电镀废水回用技术湖南省工程研究中心,常德 415000
3 中南大学化学化工学院,化学电源湖南省重点实验室,长沙 410083
Construction of Na3V2(PO4)3/CN/rGO Composite Cathode Material and Its Sodium Storage Performance
WANG Shijie1, XIAO Hui1, REN Yurong1, HUANG Xiaobing2, WANG Haiyan3
1 Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou Key Laboratory of the Vital Technology for Power Battery and Management System, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
2 Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, China
3 Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 3168KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Na3V2(PO4)3具有理论容量高、钠离子超导体(NASICON)结构等优势,被认为是一种值得研究和大规模应用的新型钠离子电池正极材料。然而低的电导率导致其电化学性能在大电流充放电条件下不理想。本实验采用固相法制备了一种由氮掺杂碳与还原氧化石墨烯(rGO)共修饰的Na3V2(PO4)3/CN/rGO (NVP/CN/rGO)复合正极材料,并借助材料表征手段、电化学分析技术等对不同含量rGO掺入的NVP/CN/rGO正极材料的微观形貌和电化学性能进行了系统研究。结果显示,NVP/CN/rGO-2复合材料颗粒分布均匀,并表现出较高的可逆容量和优越的循环稳定性。在0.2 C、10 C下可逆容量分别为116.9 mAh·g-1和99.4 mAh·g-1,且在10 C下循环1 500次后,容量保持率为97.2 %。复合材料表现优异性能的主要原因是:rGO特殊的导电网络结构将孤立的NVP/CN连接起来,提升了颗粒之间的接触电导,使其导电性进一步提高,从而显著提升其电化学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪仕杰
肖慧
任玉荣
黄小兵
王海燕
关键词:  钠离子电池  正极材料  Na3V2(PO4)3  还原氧化石墨烯    
Abstract: Na3V2(PO4)3 is regarded as a viable and promising cathode material in sodium-ion batteries because of its high capacity and NASICON structure. However, the low conductivity leads to unsatisfactory electrochemical performance under high current charge and discharge conditions. In this work, Na3V2(PO4)3/CN/rGO (NVP/CN/rGO)cathode material on the basis of nitrogen doped carbon and reduced graphene oxide (rGO) decorated are prepared via the solid phase method, and the influence of different contents of rGO on the microscopic morphology and electrochemical performance of the NVP/CN/rGO cathode material, are systematically studied by the aid of material characterization methods and electrochemical analysis techniques. The results reveal that NVP/CN/rGO-2 particles are very uniform, and they display an excellent electrochemical performance, which is confirmed by high discharge specific capacity (116.4 mAh·g-1 at 0.2 C) and long-term lifetime (97.2% capa-city retention after 1 500 cycles). The main reason for the excellent performance of the composites is that the special conductive network structure of grapheme can connect the isolated NVP/CN particles and further improve its conductivity, thereby showing excellent storage sodium perfor-mance.
Key words:  sodium ion battery    cathode material    Na3V2(PO4)3    reduced graphene oxide
出版日期:  2021-12-25      发布日期:  2021-12-27
ZTFLH:  TM911  
基金资助: 国家自然科学基金(91961126);江苏高校优势学科建设工程资助项目;江苏省教育厅青蓝工程;江苏省研究生科研与实践创新计划项目(KYCX20_2539)
通讯作者:  ryrchem@163.com;hxb220170@126.com   
作者简介:  汪仕杰,现为常州大学材料科学与工程学院硕士研究生,导师为任玉荣教授。自2020年6月至今,他在黄小兵教授的指导下在湖南文理学院进行联合培养,主要从事钠离子电池正极材料的制备和改性研究。任玉荣,常州大学材料科学与工程学院教授、博士研究生导师。1998年7月本科毕业于吉林师范大学,2010年7月在中国科学院成都有机化学研究所获得博士学位。2015—2016年在加州大学洛杉矶分校做访问学者。主要研究方向包括新型炭材料和新型纳米能源材料与器件研究。黄小兵,湖南文理学院教授,研究生导师。2004年6月本科毕业于中南大学,2011年6月在中国科学院成都有机化学研究所获得博士学位。同年加入湖南文理学院材料学院工作至今。主要从事新型储能系统及相关电极材料研究。
引用本文:    
汪仕杰, 肖慧, 任玉荣, 黄小兵, 王海燕. Na3V2(PO4)3/CN/rGO复合正极材料的构筑及储钠性能研究[J]. 材料导报, 2021, 35(24): 24006-24010.
WANG Shijie, XIAO Hui, REN Yurong, HUANG Xiaobing, WANG Haiyan. Construction of Na3V2(PO4)3/CN/rGO Composite Cathode Material and Its Sodium Storage Performance. Materials Reports, 2021, 35(24): 24006-24010.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090187  或          http://www.mater-rep.com/CN/Y2021/V35/I24/24006
1 Tarascon J M, Armand M.Nature, 2001, 414, 359.
2 Kang K, Meng Y S, Breger J,et al. Science, 2006, 311, 977.
3 Armand M, Tarascon J M. Nature, 2008, 451, 652.
4 Hoang K, Johannes M. Chemistry of Materials, 2016, 28, 1325.
5 Li S, Fu X, Zhou J, et al. Journal of Materials Chemistry A, 2016, 4, 5823.
6 Liang K, Ren Y R, Tang Y G, et al.Materials Reports, 2020, 34(9), 9041(in Chinese).
梁康,任玉荣,唐有根,等. 材料导报,2020, 34(9), 9041.
7 Goodenough J B, Park K S. Journal of the American Chemical Society, 2013, 135(4), 1167.
8 Pan H L, Hu Y S, Chen L Q. Energy & Environmental Science, 2013, 6, 2338.
9 Malini R, Uma U, Sheela T,et al. Ionics, 2008, 15, 301.
10 Bruce P G, Scrosati B, Tarascon J M. Angewandte Chemie, 2008, 120,2972.
11 Shakoor R A, Seo D H, Kim H, et al. Journal of Materials Chemistry, 2012, 22, 20535.
12 Hong S Y, Kim Y, Park Y, et al. Energy & Environmental Science, 2013, 6, 2067.
13 Kim J, Seo D H, Kim H, et al. Energy & Environmental Science, 2015, 8, 540.
14 Cao D, Yin C, Shi D,et al. Advanced Functional Materials, 2017,27, 1701130.
15 Hwang J Y, Myung S T, Sun Y K. Chemical Society Reviews, 2017, 46, 3529.
16 Fan L, Li X. Nano Energy, 2018, 53, 630.
17 Rojo T, Hu Y, Forsyth M, et al. Advanced Energy Materials, 2018, 8, 1800880.
18 Han M H, Gonzalo E, Singh G, et al. Energy & Environmental Science, 2015, 8, 81.
19 Fang Y, Chen Z, Ai X, et al. Acta Physico-Chimica Sinica, 2017, 33, 211.
20 Xiang X D, Zhang K, Chen J. Advanced Materials, 2015, 27, 5343.
21 Fang Y, Zhang J, Xiao L, et al. Advanced Science, 2017, 4, 1600392.
22 Aragoón M J, Lavela P, Ortiz G F, et al. ChemElectroChem, 2015, 2, 995.
23 Li H, Yu X, Bai Y, et al. Journal of Materials Chemistry A, 2015, 3, 9578.
24 Shakoor R A, Seo D H, et al. Journal of Materials Chemistry, 2012, 22 (38), 20535.
25 Rui X, Sun W, Wu C, et al. Advanced Materials, 2015, 27 (42), 6670.
26 Jiang Y, Yang Z, Li W, et al. Advanced Energy Materials, 2015, 5, 1402104.
27 Fang Y, Xiao L, Ai X, et al. Advanced Materials, 2015, 27(39), 5895.
28 Fang J, Wang S, Li Z, et al. Journal of Materials Chemistry A, 2016, 4, 1180.
29 Shen W, Li H, Guo Z,et al. RSC Advances, 2016, 6, 71581.
30 Zhao L, Zhao H, Du Z,et al. Electrochimica Acta, 2018, 282, 510.
31 Zheng Q, Ni X, Lin L,et al. Journal of Materials Chemistry, 2018, 6, 4209.
32 Jiang Y, Xu W W, Chen D D, et al. Electrochimica Acta, 2012, 85, 377.
33 Liu H, Jia M Q, Cao B, et al. Journal of Power Sources, 2016, 319, 195.
34 Zhu Q Z, Ma L, Wang H R, et al. ChemistrySelect, 2017, 2, 4456.
35 Chen H, Huang Y, Mao G,et al. Frontiers in Chemistry, 2018, 6, 1.
36 Zhang J X, Fang Y J, Xiao L F, et al. ACS Applied Materials & Interfaces, 2017, 9, 7177.
37 Xiao H, Huang X B, Ren Y R, et al. Journal of Alloys and Compounds, 2018, 732, 454.
38 Xu Y N, Wei Q L, et al. Advanced Energy Materials, 2016, 6 (14),1600389.
39 Duan W C, Zhu Z Q, et al.Journal of Materials Chemistry A, 2014, 2 (23), 8668.
40 Li Y, Liao H X, et al. Small Methods, 2019, 3 (5), 1800533.
[1] 黄绪德, 刘欣. 利用维生素C和茶多酚还原氧化石墨烯及其表征[J]. 材料导报, 2021, 35(Z1): 83-86.
[2] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[3] 李欢, 何妍妍, 周国伟. 普鲁士蓝及普鲁士蓝类化合物材料在钠离子电池中的研究进展[J]. 材料导报, 2021, 35(23): 23050-23056.
[4] 王皓, 李峻峰, 马悦, 杨亚楠, 张佩聪, 赖雪飞, 岳波. 锂离子电池钒系电极材料的研究进展[J]. 材料导报, 2021, 35(21): 21127-21142.
[5] 夏广辉, 王丁, 李雪豹, 董鹏, 张英杰, 王皓逸. 钠离子电池金属硫化物负极材料的研究进展[J]. 材料导报, 2021, 35(13): 13041-13051.
[6] 周建峰, 翟鑫华, 张盼盼, 何亚鹏, 董劲, 黄惠, 郭忠诚. 富锂锰基正极材料结构优化及晶面调控研究进展[J]. 材料导报, 2021, 35(11): 11057-11065.
[7] 田庆华, 邹艾玲, 童汇, 喻万景, 张佳峰, 郭学益. 废旧三元锂离子电池正极材料回收技术研究进展[J]. 材料导报, 2021, 35(1): 1011-1022.
[8] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[9] 梁康, 任玉荣, 唐有根, 孙旦, 贾树勇, 王海燕, 黄小兵. 钛酸锂用于钠离子电池负极的研究进展[J]. 材料导报, 2020, 34(9): 9041-9047.
[10] 吴坚, 李建营, 李绍敏, 刘昊. 均匀沉淀法助力Li2ZrO3包覆LiNi0.85Co0.1Mn0.05O2提升电化学性能[J]. 材料导报, 2020, 34(6): 6015-6019.
[11] 肖帅, 王振飞, 张萍, 何岗, 洪建和. 还原氧化石墨烯/碳纸空气电极的电化学制备及性能[J]. 材料导报, 2020, 34(20): 20005-20009.
[12] 袁梅梅, 徐汝辉, 姚耀春. 锂离子电池正极材料LiFePO4的表面碳包覆改性研究进展[J]. 材料导报, 2020, 34(19): 19061-19066.
[13] 张英杰, 张举峰, 段建国, 任婷, 董鹏, 王丁. 钠离子电池Sb基负极材料的研究进展[J]. 材料导报, 2020, 34(11): 11106-11113.
[14] 孟锦涛,周良毅,钟芸,沈越,黄云辉. 柔性钠离子电池研究进展[J]. 材料导报, 2020, 34(1): 1169-1176.
[15] 欧先国, 周玉山, 毛文峰, 顾晓瑜, 长世勇, 裴锋. 多孔碳添加量对溶胶凝胶-碳热还原法制备磷酸钒锂正极材料的电化学影响[J]. 材料导报, 2019, 33(Z2): 38-42.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed