Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 600-606    
  高分子与聚合物基复合材料 |
环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究
ZEZE Armande Loraine Phalé1, 徐红岩1, 张默1,2, 马国伟1,3
1 河北工业大学土木与交通学院,天津300401
2 智慧基础设施研究院,天津300401
3 天津市装配式建筑与智能建造重点实验室,天津300401
Study on Seawater Corrosion Resistance of Epoxy Resin-Geopolymer Composites Coating
ZEZE Armande Loraine Phalé1, XU Hongyan1, ZHANG Mo1,2, MA Guowei1,3
1 School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
2 Smart Infrastructure Research Institute, Tianjin 300401, China
3 Tianjin Key Laboratory of Prefabricated Building and Intelligent Construction, Tianjin 300401, China
下载:  全 文 ( PDF ) ( 6089KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 地聚物具有优异的耐化学腐蚀性能,但易收缩开裂的缺点限制了其在混凝土保护涂层中的应用。为了提高地聚物的延展性和体积稳定性,本研究合成了环氧树脂-地聚物(EG)复合材料。通过力学试验、海水浸泡试验、线性极化电极试验、扫描电子显微镜和N2-吸附BJH试验,探讨了EG作为海洋混凝土涂层的可行性,研究了树脂掺量对EG在海水环境中的耐腐蚀性和耐久性的影响。与纯地聚物相比,树脂掺量为20%~30%时,EG在室温养护过程中和湿-干循环后的收缩率均有所降低,且经历海水浸泡56 d后EG的残余强度高于地聚物。对于EG涂层,其与混凝土基材的粘结强度和抗氯离子渗透性随着树脂掺量的增加而提高。经过3轮海水湿-干循环后,树脂掺量为30%的EG涂层试件的线性极化电阻约为未涂层试件的11倍。微观结构表征表明,树脂的加入减小了地聚物主要孔隙尺寸,提高了地聚物的致密性,有助于降低地聚物的收缩率,提高地聚物的耐久性。研究结果表明,EG复合材料作为海工混凝土防腐涂层具有良好的应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
ZEZE Armande Loraine Phalé
徐红岩
张默
马国伟
关键词:  环氧树脂-地聚物  耐久性  耐氯离子渗透性  孔隙率    
Abstract: Geopolymer has excellent chemical resistance, whereas the high cracking potential limited its application in concrete protective coating. In the present study, epoxy resin-geopolymer (EG) composites were synthesized to improve the ductility and volumetric stability of geopolymer. To explore the feasibility of EG as marine concrete coating, the influences of resin contents on the corrosion resistance and durability of EG in seawater environment were investigated via physical and mechanical testing, seawater conditioning, linear polarization resistance testing, scanning electron microscopy and N2-adsorption BJH tests. Compared to pure geopolymer, the shrinkage of EG with 20%—30% of resin during curing and after wet-dry cycling was decreased, with which the residual strength of EG was higher than geopolymer after 56 d seawater soaking. For EG coating, the adhesive strength and chloride corrosion resistance were increased with resin content. The linear polarization resistance of EG coa-ting with 30wt% of epoxy resin was about 11 times of the sample without coating after 3 rounds of seawater wet-dry cyclings. The microstructure characterization indicated that the decreased dominant pore size and embedment of resin improved the compactness and energy adsorption capability of geopolymer, and contributed to the decreased shrinkage and enhanced durability of EG. The findings suggested that EG composite can provide promising alternative as anticorrosion coating in marine environment.
Key words:  epoxy resin-geopolymer    durability    chloride resistance    porosity
                    发布日期:  2021-07-16
ZTFLH:  TU52  
基金资助: 河北省自然科学基金(E2019202431; E2019202484);河北省青年拔尖人才基金(BJ2020001);河北省引进留学人员资助项目(C20190506)
通讯作者:  mozhang@hebut.edu.cn   
作者简介:  Zeze Armande Loraine Phalé于2012年在布基纳法索取得国际学院水环境工程 (2iE)学士学位,现为河北工业大学土木与交通学院硕士研究生,期间从事有机改性地聚物海工混凝土涂层的制备和性能研究工作。张默,河北工业大学土木与交通学院,博士,讲师,硕士研究生导师。于2011年和2015年在美国伍斯特理工学院获得硕士和博士学位。研究方向为地质聚合物及其复合材料的合成、反应机理和分子动力学模拟,3D打印多固废胶凝材料的合成和性能以及废弃纤维复合材料在水泥基建筑材料中资源化利用研究等。主持国家自然科学基金、河北省青年拔尖人才项目、河北省自然科学基金,中国博士后基金等多项基金项目。发表论文16篇,其中SCI 11篇,EI 3篇, 授权中国发明专利4件,美国发明专利1件。
引用本文:    
ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
ZEZE Armande Loraine Phalé, XU Hongyan, ZHANG Mo, MA Guowei. Study on Seawater Corrosion Resistance of Epoxy Resin-Geopolymer Composites Coating. Materials Reports, 2021, 35(Z1): 600-606.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/600
1 Ma C K, Awang A Z, Omar W. Construction and Building Materials, 2018, 186, 90.
2 Temuujin J, Rickard W, Lee M, et al. Journal of Non-Crystalline Solids, 2011, 357, 1399.
3 Tahri W, Abdollahnejad Z, Mendes J, et al. European Journal of Environmental and Civil Engineering, 2016, 21, 555.
4 Zhang Y S, Sun W, Chen Q L, et al. Journal of Hazardous Materials, 2007, 143, 206.
5 O'Connell M, McNally C, Richardson M G. Cement Concrete Composites, 2010, 32, 479.
6 Cioffi R, Maffucci L, Santoro L. Resources, Conservation and Recycling, 2003, 40, 27.
7 Zhang M, El-Korchi T, Zhang G P, et al. Fuel, 2014, 134, 315.
8 Sakulich A R, Anderson E, Schauer C, et al. Construction and Building Materials, 2009, 23, 2951.
9 Zhang M, Zhao M G, Zhang G P. Construction and Building Materials, 2016, 124, 373.
10 Zhang L Y, Ahmari S, Zhang J H. Construction and Building Materials, 2011, 25, 3773.
11 Val D V, Stewart M G. Structural Safety, 2003, 25, 343.
12 Otieno M, Beushausen H, Alexander M. Cement and Concrete Research, 2016, 79, 373.
13 Pan X Y, Shi Z G, Shi C J. Construction and Building Materials, 2017, 132, 578.
14 Ahmad S, Gupta A P, Sharmin E, et al. Progress in Organic Coatings, 2005, 54, 248.
15 Reddy D V, Edouard J B, Sobhan K. Journal of Materials in Civil Engineering, 2013, 25, 781.
16 Chindaprasirt P, Chalee W. Construction and Building Materials, 2014, 63, 303.
17 Palomo A, Blanco-Varela M T, Granizo M L, et al. Cement and Concrete Research, 1999, 29, 997.
18 Astutiningsih S, Nurjaya D M, Ashadi H W, et al. Advances in Science and Technology, 2010, 69, 92.
19 Aguirre-Guerrero A M, Robayo-Salazar R A, de Gutiérrez R M.Applied Clay Science, 2017, 135, 437.
20 Zhang Z H, Yao X, Wang H. Applied Clay Science, 2012, 67-68, 57.
21 Zhang Z H, Yao X, Zhu H J. Applied Clay Science, 2010, 49, 1.
22 Timakul P, Rattanaprasit W, Aungkavattana P. Ceramics International, 2016, 42, 6288.
23 Bhutta A, Farooq M, Zanotti C, et al. Materials and Structures, 2017, 50, 1.
24 Giuseppina R, Laura R, Oreste T, et al. Materials (Basel), 2016, 9, 461.
25 Colangelo F, Roviello G, Ricciotti L, et al. Materials, 2013, 6, 2989.
26 Ferone C, Roviello G, Colangelo F, et al. Applied Clay Science, 2013, 73, 42.
27 Du J, Bu Y H, Shen Z H, et al. Materials & Design, 2016, 109, 133.
28 Zhang S Z, Gong K C, Lu J W. Materials Letters, 2004, 58, 1292.
29 Zhang Y J, Wang Y C, Xu D L, et al. Materials Science and Engi-neering: A, 2010, 527, 6574.
30 Li Z, Chen R, Zhang L Y. Journal of Materials Science, 2013, 48, 7986.
31 Roviello G, Menna C, Tarallo O, et al. Materials & Design, 2015, 87, 82.
32 ASTM, ASTM C191-13, Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle, ASTM International, 2013.
33 ASTM, ASTM G59-97, Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, West Conshohocken, PA, 2014.
34 Bernal S A, Bejarano J, Garzón C, et al. Composites Part B: Enginee-ring, 2012, 43, 1919.
35 Zhao Q, Nair B, Rahimian T, et al. Journal of Materials Science, 2007, 42, 3131.
36 Ahmari S, Zhang L. Construction and Building Materials, 2013, 44, 743.
[1] 胡学飞. 低熔点玻璃粉对水冷壁涂层组织和性能的影响[J]. 材料导报, 2021, 35(Z1): 189-194.
[2] 李崇智, 王梦宇, 牛振山. 渗透结晶型表面防护剂对混凝土耐久性的影响[J]. 材料导报, 2021, 35(Z1): 247-250.
[3] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[4] 杨燕, 谭康豪, 覃英宏. 混凝土内氯离子扩散影响因素的研究综述[J]. 材料导报, 2021, 35(13): 13109-13118.
[5] 郑少军, 刘天乐, 高鹏, 蒋国盛, 冯颖韬, 李丽霞, 陈宇. 固井水泥石孔隙结构演变及力学强度发展规律[J]. 材料导报, 2021, 35(12): 12092-12098.
[6] 石加顺, 钱如胜, 张云升, 陈逸东, 钱佳佳, 刘志勇. 水泥基材料气体渗透性测试方法及与耐久性关系的研究进展[J]. 材料导报, 2021, 35(1): 1121-1130.
[7] 赵尚传, 李小鹏, 王少鹏. 混凝土自修复微胶囊壁材的研究现状与进展[J]. 材料导报, 2020, 34(Z2): 201-205.
[8] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[9] 李嘉鹏, 李威翰, 刘嘉良, 李永玲, 李飞. 透水路面制品渗透性能的研究进展[J]. 材料导报, 2020, 34(Z2): 265-268.
[10] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[11] 张绍康, 王茹, 徐玲琳, 钟世云, 张国防, 王培铭. 羟乙基甲基纤维素改性水泥砂浆的物理力学性能和孔隙率[J]. 材料导报, 2020, 34(Z2): 607-611.
[12] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[13] 王锐, 黄榜彪, 莫济成, 李青, 朱基珍. 冻融循环对烧结页岩多孔砖砌体抗剪性能的影响[J]. 材料导报, 2020, 34(Z1): 258-260.
[14] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[15] 白亚飞, 王栋民. 公路混凝土用低坍落度塑性混凝土和无坍落度干硬性混凝土用引气剂的
国内外研究进展
[J]. 材料导报, 2020, 34(7): 7099-7106.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed