Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 331-335    
  金属与金属基复合材料 |
基于机器学习的高熵合金生成相预测研究
张猛, 花福安, 赵巍
东北大学轧制技术及连轧自动化国家重点实验室,沈阳 110819
Research on Phase Prediction of High-entropy Alloys Based on Machine Learning
ZHANG Meng, HUA Fuan, ZHAO Wei
The State Key Laboratory of Rolling and Automation,Northeast University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 3310KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来关于机器学习技术预测高熵合金生成相相关工作相继被报道,但存在采用的高熵合金生成相经验参数少、未考虑制备工艺对高熵合金生成相影响的不足。针对此,本文基于人工神经网络、K近邻、支持向量机以及集成学习4种机器学习算法,收集了19种经验参数,对搜集的982种高熵合金进行模型预测。研究发现,与前人采用的5种经验参数相对比,采用17种经验参数的机器学习模型预测生成相精度从75.75%提升到了79.78%。并且发现采用熔铸法制备的高熵合金数据集训练模型,得到的模型预测精度比多种制备工艺制备的高熵合金数据集进一步提升了4.36%。结果表明,增加合适的经验参数和采用单一的熔铸法制备的高熵合金数据集有助于提升机器学习模型预测的精度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张猛
花福安
赵巍
关键词:  高熵合金  机器学习  生成相  制备工艺    
Abstract: In recent years, related work on predicting the formation phase of high-entropy alloys by machine learning technology has been reported successively, but there are some disadvantages such as less empirical parameters about the formation phases of high-entropy alloys and not considering the influence of preparation process on the formation phases of high-entropy alloys. In response to this shortcoming, in this paper, 19 kinds of empirical parameters were collected based on four machine learning algorithms, namely artificial neural networks, K-nearest neighbors, support vector machines, and ensemble learning, and the 982 high-entropy alloys collected were predicted by the model. The research shows that compared with the five empirical parameters used by predecessors, the prediction accuracy of the machine learning model using 17 empirical parameters has increased from 75.75% to 79.78%. It is also found that the accuracy of the model is further improved by 4.36% compared with that of the high-entropy alloy dataset prepared by a variety of fabrication processes. The results show that adding appropriate empirical parameters and the high entropy alloy data set prepared by single casting method can improve the prediction accuracy of machine learning model.
Key words:  high-entropy alloy    machine learning    phase formation    preparation process
                    发布日期:  2021-07-16
ZTFLH:  TG113.12  
通讯作者:  huafa@ral.neu.edu.cn   
作者简介:  张猛,东北大学材料科学与工程学院硕士研究生,在花福安教授指导下进行研究,目前主要研究的领域为高熵合金材料。花福安,东北大学材料科学与工程学院教授,硕士研究生导师。2004年获得中国科学院金属研究所金属加工研究所材料加工工程博士学位。主要研究方向包括材料加工,材料加工的建模和仿真,材料加工设备的研发以及材料科学中的机器学习应用等。在国内外学术期刊上发表论文20多篇,授权国家发明专利10余项,曾获国家科技进步二等奖。
引用本文:    
张猛, 花福安, 赵巍. 基于机器学习的高熵合金生成相预测研究[J]. 材料导报, 2021, 35(Z1): 331-335.
ZHANG Meng, HUA Fuan, ZHAO Wei. Research on Phase Prediction of High-entropy Alloys Based on Machine Learning. Materials Reports, 2021, 35(Z1): 331-335.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/331
1 Yeh J W, Chen S K, Lin S J, et al.Advanced Engineering Materials, 2004, 6, 299.
2 Cantor B, Chang I T H, Knight P, et al.Materials Science & Engineering A, 2004, 375-377,213.
3 Gurao N P, Biswas K, et al.Journal of Alloys & Compounds, 2017,697, 434.
4 Coury F G, Wilson P, Clarke K D, et al.Acta Materialia, 2019,167, 1.
5 Gao M C, Yeh J W, Liaw P K, et al.Springer International Publishing, 2016, 12,399.
6 Zhang Y, Zhou Y, Lin J, et al. Advanced Engineering Materials, 2008, 10(6),534.
7 Huang W, Martin P, Zhuang H L.Acta Materialia, 2019, 169,225.
8 Freund Y, Schapire R E.Journal of Computer & System Sciences, 1997, 55,119.
9 Wen C, Zhang Y, Wang C, et al.Acta Materialia, 2019, 170,109.
10 Roy A, Babuska T, Krick B, et al.Scripta Materialia, 2020, 185,152.
11 Dai Dongbo, Xu Tao, Wei Xiao, et al.Computational Materials Science, 2020, 175,109.
12 Zhou Z, Zhou Y, He Q, et al.npj Computational Materials, 2019, 5,128.
13 Agarwal A, Prasada R A K.JOM, 2019, 71,3424.
14 Islam N, Huang W, Zhuang H, et al.Computational Materials Science, 2018, 150,230.
15 Yeh J W, Lin S J, Chin T S, et al.Metallurgical & Materials Transactions A, 2004, 35,2533.
16 Toda-Caraballo I, Rivera-Díaz-del-Castillo P E.Intermetallics, 2016, 71,76.
17 Miracle D B, Senkov O N. Acta Materialia, 2017, 122,448.
18 Yang X, Zhang Y.Materials Chemistry and Physics, 2012, 132,233.
19 Ye Y F, Wang Q, Lu J, et al.Materials Today, 2015, 19,349.
20 Lederer Y, Toher C, Vecchio K S, et al.Acta Materialia, 2018, 159,364.
21 Gao M C, Zhang C, Gao P, et al.Current Opinion in Solid State and Materials Science, 2017, 21,238.
22 Chauhan P, Chopra S, Shanmugasundaram T.Advanced Engineering Materials, 2019, 21(1),190.
23 Zheng M, Ding W, Cao W, et al.Materials & Design, 2019, 179,78.
24 Ye Y F, Wang Q, Lu J, et al.Scripta Materialia, 2015, 104,53.
25 Singh A K, Kumar N, Dwivedi A, et al.Intermetallics, 2014, 53,112.
26 Wang Z, Qiu W, Yang Y, et al.Intermetallics, 2015, 64,63.
27 Ye Y F, Liu C T, Yang Y.Acta Materialia, 2015, 94,152.
28 He Q F, Ye Y F, Yang Y.Journal of Phase Equilibria & Diffusion, 2017, 38,416.
29 Takeuchi A, Inoue A.Materials Transactions Jim, 2007, 41(11),1372.
30 Wang Z, Huang Y, Yang Y, et al.Scripta Materialia, 2015, 94,28.
31 Melnick A B, Soolshenko V K, et al.Journal of Alloys & Compounds, 2017, 694,223.
32 Morinaga M, Yukawa H.Bulletin of Materials Science, 1997, 20,805.
33 张良均.Python数据分析与挖掘实战.机械工业出版社,2016.
34 金林,李研.统计与信息论坛,2019,34(4),3.
35 陈永星,朱胜,王晓明, 等.材料工程,2017,45(11),129.
36 李航.统计学习方法. 清华大学出版社, 2012.
[1] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[2] 田浩亮, 张晓敏, 金国, 朴钟宇, 王长亮, 郭孟秋, 杜修忻, 王天颖, 张昂, 肖晨兵. 电火花沉积高熵合金涂层的研究现状与展望[J]. 材料导报, 2021, 35(Z1): 342-346.
[3] 郑玉杰, 梁鑫斌, 张起, 孙文博, 施童超, 杜鹃, 孙宽. 基于分子指纹及机器学习回归模型的有机光伏材料效率预测[J]. 材料导报, 2021, 35(8): 8207-8212.
[4] 杨博, 余金山, 顾全超, 王洪磊, 周新贵. SiCf/SiC复合材料制备研究进展[J]. 材料导报, 2021, 35(3): 3050-3056.
[5] 夏铭, 孙博, 王鑫, 梁秀兵, 沈宝龙. 高熵合金增材制造研究现状与展望[J]. 材料导报, 2021, 35(13): 13119-13127.
[6] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[7] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[8] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[9] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[10] 牛程程, 李少波, 胡建军, 但雅波, 曹卓, 李想. 机器学习在材料信息学中的应用综述[J]. 材料导报, 2020, 34(23): 23100-23108.
[11] 陈运灿, 闫二虎, 狄翀博, 王金华, 黄浩然, 王豪, 刘威, 徐芬, 孙立贤. 5B族(Nb,V和Ta)合金渗氢膜的研究进展[J]. 材料导报, 2020, 34(21): 21001-21011.
[12] 李萌, 杨成博, 张静, 郑开宏. 轻质高熵合金的研究现状[J]. 材料导报, 2020, 34(21): 21125-21134.
[13] 康靓, 米晓希, 王海莲, 吴璐, 孙凯, 汤爱涛. 人工神经网络在材料科学中的研究进展[J]. 材料导报, 2020, 34(21): 21172-21179.
[14] 季承维, 马爱斌, 江静华. 轻质高熵合金的研究现状与发展趋势[J]. 材料导报, 2020, 34(19): 19094-19100.
[15] 贾岳飞, 王刚, 贾延东, 伍诗伟, 穆永坤, 徐龙, 张靓博, 徐立明. 轻质高熵合金研究现状[J]. 材料导报, 2020, 34(17): 17003-17017.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed