Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8070-8075    https://doi.org/10.11896/cldb.20020074
  无机非金属及其复合材料 |
F1离子固化剂加固试验黄土的物理力学特性变化机理
王景龙1, 王旭1,2, 李建东1, 张延杰1, 蒋代军1, 刘德仁1, 李迅1
1 兰州交通大学土木工程学院,兰州 730070
2 道桥工程灾害防治技术国家地方联合工程实验室,兰州 730070
Mechanism of Experimental Loess Reinforced by F1 Ionic Soil Stabilizer in Physical and Mechanical Properties
WANG Jinglong1, WANG Xu1,2, LI Jiandong1, ZHANG Yanjie1, JIANG Daijun1, LIU Deren1, LI Xun1
1 School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2 National and Provincial Joint Engineering Laboratory of Road & Bridge Disaster Prevention and Control, Lanzhou 730070, China
下载:  全 文 ( PDF ) ( 5139KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究离子型土壤固化剂加固黄土的作用效果,对不同F1固化剂掺量的试验黄土进行物理力学参数试验以及微观试验,分析了固化剂加固土体的微观结构变化,探讨了固化剂对试验黄土物理力学性质的影响规律和加固机理。研究结果表明:F1固化剂能提供强正电或强阳离子分子,通过离子交换作用与永久带负电荷的黏土矿物颗粒吸附,使得土颗粒在外荷载作用下重新排列成联结力更强的层状堆叠结构,改善了土体的物理力学特性;F1固化剂阻碍了黏土颗粒对极性水分子的吸附,降低了黏土颗粒的水敏性,使得土体的液、塑限和最优含水率降低,最大干密度和无侧限抗压强度增大;微观电镜扫描与核磁共振试验表明,F1固化剂可减小土颗粒间的孔隙体积、孔隙面积比和粒间孔径,降低孔隙连通性;F1固化剂使用便捷、成本低廉、养护周期短,与石灰、水泥等传统土体改良材料相比有众多独有优点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王景龙
王旭
李建东
张延杰
蒋代军
刘德仁
李迅
关键词:  黄土  固化剂  固化机理    
Abstract: The purpose of this paper is to research the effect of loess reinforced by soil stabilizer. A series of experiments are conducted to analyze the physico-mechanical properties and microscopic mechanism of the experimental loess reinforced by ionic soil stabilizer (F1). The experimental results indicate that the F1 stabilizer can provide strongly positive or cationic molecules, and adsorb clay mineral particles with permanent negative charge through ion exchange, so that the soil particles can be rearranged into a layered stacked structure with stronger bonding force under external load to increase the strength of soil; F1 stabilizer hinder the adsorption of clay particles to polar water molecules, reduce the water sensitivity, liquid and plastic limit, and optimum moisture content of soil, but increase the maximum dry density and unconfined compressive strength; SEM and NMR test show that, the F1 can reduce pore volume, area ratio, diameter, and connectivity. Compared with traditional reinforced materials such as lime and cement, F1 stabilizer has many unique advantages such as convenient utilization, low cost, and short curing period.
Key words:  loess    soil stabilizer    stabilization mechanism
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  TU472  
基金资助: 国家自然科学基金项目(41662017;51868038);国家重点研发计划项目(2017YFB1201204)
通讯作者:  publicwang@163.com   
作者简介:  王景龙,兰州交通大学硕士研究生,道路与铁道工程专业,主要从事黄土地区地基处理与基础工程的学习研究。
王旭,兰州交通大学土木工程系教授,在西南交通大学获得工学学士、硕士与博士学位。主要从事土木工程教学、科研与管理工作,区域性土工理论与应用研究。已在国内外学术期刊发表学术论文80余篇,参编教材与专著2部,相关研究成果获得省级科技进步奖8项,中国铁道学会科学技术奖3项。担任《路基工程》编委、担任铁道学会铁道工程委员会、地质与路基专业委员会、全国湿陷性黄土委员会和地基基础委员会委员,全国桩基础工程学会、甘肃省岩石力学与工程常务与甘肃省土木建筑学会理事。
引用本文:    
王景龙, 王旭, 李建东, 张延杰, 蒋代军, 刘德仁, 李迅. F1离子固化剂加固试验黄土的物理力学特性变化机理[J]. 材料导报, 2021, 35(8): 8070-8075.
WANG Jinglong, WANG Xu, LI Jiandong, ZHANG Yanjie, JIANG Daijun, LIU Deren, LI Xun. Mechanism of Experimental Loess Reinforced by F1 Ionic Soil Stabilizer in Physical and Mechanical Properties. Materials Reports, 2021, 35(8): 8070-8075.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020074  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8070
1 Wang Y M, Gao L C. Journal of Engineering Geology,2012,20(6),1071(in Chinese).
王银梅,高立成.工程地质学报,2012,20(6),1071.
2 Wang Y M, Yang Z C, Chen W W, et al. Chinese Journal of Rock Mechanics and Engineering,2005(14),2554(in Chinese).
王银梅,杨重存,谌文武,等.岩石力学与工程学报,2005(14),2554.
3 Fang X W, Sun S G, Chen Z H, et al. Rock and Soil Mechanics,2006,27(9),1545(in Chinese).
方祥位,孙树国,陈正汉,等.岩土力学,2006,27(9),1545.
4 Liu S Y, Zhang T, Cai G J. China Journal of Highway and Transport,2018,31(3),1(in Chinese).
刘松玉,张涛,蔡国军.中国公路学报,2018,31(3),1.
5 Fang S, Huang X F, Zhang P C, et al. Materials Reports B: Research Papers,2017,31(11),135(in Chinese).
方晟,黄雪峰,张彭成,等.材料导报:研究篇,2017,31(11),135.
6 Zhang L P, Zhang X C, Sun Q. Science of Soil and Water Conservation,2009,7(4),60(in Chinese).
张丽萍,张兴昌,孙强.中国水土保持科学,2009,7(4),60.
7 Zhang L P, Zhang X C, Sun Q. Transactions of the CSAE,2009,25(7),45(in Chinese).
张丽萍,张兴昌,孙强.农业工程学报,2009,25(7),45.
8 Mi J F, Wang H, Liu J B, et al. Materials Reports,2017,31(S1),388(in Chinese).
米吉福,汪浩,刘晶冰,等.材料导报,2017,31(专辑29),388.
9 Xu X F, Pan Z H, Li H M. Materials Reports B: Research Papers,2014,28(8),126(in Chinese).
徐学分,潘志华,李洪马.材料导报:研究篇,2014,28(8),126.
10 Liu Q B, Xiang W, Zhang W F, et al. Rock and Soil Mechanics,2009,30(8),2286(in Chinese).
刘清秉,项伟,张伟锋,等.岩土力学,2009,30(8),2286.
11 Liu Q B, Xiang W, Cui D S. Chinese Journal of Geotechnical Enginee-ring,2012,34(10),1887(in Chinese).
刘清秉,项伟,崔德山.岩土工程学报,2012,34(10),1887.
12 Liu Q B, Xiang W, Cui D S, et al. Chinese Journal of Geotechnical Engineering,2011,33(4),648(in Chinese).
刘清秉,项伟,崔德山,等.岩土工程学报,2011,33(4),648.
13 Nima Latifi, Amin Eisazadeh, Aminaton Marto. Environmental Earth Sciences,2014,72(1),91.
14 Nima Latifi, Suksun Horpibulsuk, Christopher L Meehan, et al. Journal of Materials in Civil Engineering,2017,29(2),04016204.
15 Nima Latifi, Amin Eisazadeh, Aminaton Marto, et al. Construction and Building Materials,2017,147,827.
16 Onyejekwe S, Ghataora G S. Bulletin Engineering Geology and the Environment,2014,74(2),651.
17 Tingle J S, Newman J K, Larson S L, et al. Transportation Research Record Journal of the Transportation Research Board,2007,1989(1),59.
18 Katz L E, Rauch A F, Liljestrand H M, et al. Transportation Research Record,2001,1757(1),50.
19 Ministry of Housing and Urban-Rural Development of the People's Republic of China(MOHURD). GB/T50123-2019. Standard for geotechnical testing method,2019(in Chinese).
中华人民共和国住房和城乡建设部.GB/T50123-2019.土工试验方法标准,2019.
20 Ministry of Transport of the People's Republic of China(MOT). JTG E40-2007. Test methods of soils for highway engineering,2007(in Chinese).
中华人民共和国交通部.JTG E40-2007.公路土工试验规程,2007.
21 Zhang Q, Yan R T, Wei C F, et al. Rock and Soil Mechanics,2015,36(S1),558(in Chinese).
张芹,颜荣涛,韦昌富,等.岩土力学,2015,36(S1),558.
22 You Z Y. Study on loess damage and its influence on slope stability under freezing and thawing. Master's Thesis, Xi'an University of Science and Technology, China,2019(in Chinese).
尤梓玉.冻融作用下黄土损伤及对边坡稳定性影响的研究.硕士学位论文,西安科技大学,2019.
23 Wang L M, Deng J, Huang Y. Chinese Journal of Rock Mechanics and Engineering,2007(S1),3025(in Chinese).
王兰民,邓津,黄媛.岩石力学与工程学报,2007(S1),3025.
24 Song Y D. ImageJ used in mineral first crash detection. Master's Thesis, Taiyuan University of Technology, China,2008(in Chinese).
宋玉丹.ImageJ在矿物初碎检测中的应用.硕士学位论文,太原理工大学,2008.
[1] 同帜, 黄开佩, 杨博文, 张健需. 低成本新型多孔陶瓷膜支撑体的制备及性能[J]. 材料导报, 2021, 35(6): 6054-6059.
[2] 李建东, 王旭, 张延杰, 蒋代军, 刘德仁, 王景龙, Steven. F1离子固化剂加固试验黄土机理及强度特性研究[J]. 材料导报, 2021, 35(6): 6100-6106.
[3] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[4] 薛松柏, 刘思怡, 刘露, 钟素娟, 龙伟民. 固化剂对树脂基Sn-58Bi复合焊膏铺展性能的影响[J]. 材料导报, 2020, 34(22): 22172-22177.
[5] 李雪岩, 常云飞, 廖明义. 氮丙啶固化端羧基液体氟橡胶的性能研究[J]. 材料导报, 2020, 34(20): 20177-20181.
[6] 同帜, 张健需, 孙小娟, 杨博文, 黄开佩. 基于天然黄土低温烧制的多孔管状陶瓷基体及其表征[J]. 材料导报, 2020, 34(12): 12050-12056.
[7] 李军辉, 廖至金, 李志君, 廖双泉, 于人同. 羧基官能化聚丁二烯:点击化学合成及对环氧树脂的固化机理[J]. 材料导报, 2018, 32(6): 983-986.
[8] 刘梦梅, 韩 森, 潘 俊, 李 微, 任万艳. 水性环氧树脂乳化沥青在高温、低温和浸水条件下的粘结性能[J]. 《材料导报》期刊社, 2018, 32(10): 1716-1720.
[9] 方晟,黄雪峰,张彭成,周俊鹏,郭楠. 电场改性水玻璃固化黄土机理研究*[J]. 材料导报编辑部, 2017, 31(22): 135-141.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed