Please wait a minute...
材料导报  2019, Vol. 33 Issue (24): 4040-4045    https://doi.org/10.11896/cldb.18100196
  无机非金属及其复合材料 |
利用电沉积-溶剂热-硒化技术提高基于二硒化镍对电极的染料敏化太阳能电池的填充因子
蒋青松1, 陈俊文2, 杨子莹1, 李文波2, 程文杰2, 胡光2
1 淮阴工学院电子信息工程学院,江苏省湖泊环境遥感技术工程实验室,淮安 223003
2 淮阴工学院数理学院,淮安 223003
Improved Fill Factor of Dye-sensitized Solar Cells with Nickel Diselenide Counter Electrode by Electrodeposition-Solvothermal-Selenization Technique
JIANG Qingsong1, CHEN Junwen2, YANG Ziying1, LI Wenbo2, CHENG Wenjie2, HU Guang2
1 Jiangsu Engineering Laboratory for Lake Environment Remote Sensing Technologies, Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai’an 223003
2 Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huai’an 223003
下载:  全 文 ( PDF ) ( 3910KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了促进绿色可再生能源的开发利用,提高低成本染料敏化太阳能电池(DSCs)的光伏性能显得十分重要。对电极作为DSCs的重要组成部分,直接影响其光伏性能。针对硒化镍对电极的电催化性能及其光伏性能有待提高等关键问题,学者们已采用多种合成技术调控硒化镍的形貌与物相,从而提高硒化镍对电极的电催化性能。研究表明,二硒化镍(NiSe2)纳米材料由于具有较多的边缘活性位点而展现出较好的导电性与催化性能。然而,与基于铂电极的电池器件相比,基于NiSe2对电极的DSCs表现出相对较小的填充因子。
   本工作利用电沉积-溶剂热-硒化技术设计构建出一种新型NiSe2对电极。其中以氟掺杂二氧化锡(FTO)导电玻璃为基底,采用恒电势电化学沉积技术制备了Co(OH)2薄膜,并以其为生长点通过溶剂热法合成镍基金属有机框架(Ni-MOF)结构,进一步以硒粉为硒源在氩气环境下进行硒化处理制备NiSe2纳米材料。SEM、TEM、XRD与XPS测试结果表明:所制备的样品是由纯相NiSe2物相构成;NiSe2纳米材料呈现出颗粒状形貌,且平均粒径约为500 nm;NiSe2纳米材料均匀生长在FTO导电玻璃表面上,可直接作为DSCs的对电极。循环伏安(CV)曲线、电化学阻抗谱(EIS)及塔菲尔(Tafel)极化曲线分析表明,NiSe2对电极展现出较窄的峰-峰间距,较小的串联电阻、电荷传输电阻、能斯特扩散阻抗以及较大的还原峰电流密度和交换电流密度,预示着NiSe2对电极具有良好的电催化性能。这是由于结晶度较高的纯相NiSe2纳米材料具有丰富的边缘活性位点;电沉积-溶剂热-硒化技术有效改善了NiSe2纳米材料在FTO导电玻璃上的附着强度,有利于电子的有效转移。此外,光电流密度-电压(J-V)曲线表明由NiSe2对电极组装的DSCs呈现出优异的光伏性能,其能量转换效率(PCE)高达7.63%,高于铂电极组装的DSCs(7.21%),其填充因子从0.65增大到0.70,可能是由于NiSe2对电极总电阻较小。
   本工作设计的新型NiSe2对电极不仅具有优异的电催化性能,还成功改善了基于NiSe2对电极的DSCs的填充因子,并有效提高了DSCs的光伏性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋青松
陈俊文
杨子莹
李文波
程文杰
胡光
关键词:  二硒化镍  染料敏化太阳能电池  电沉积  溶剂热  硒化    
Abstract: The photovoltaic performance of low-cost dye-sensitized solar cells (DSCs) should be further improved to promote the development and utilization of green renewable energy. The photovoltaic performance can be directly affected by counter electrode (CE) as an important part of DSCs. However, the photovoltaic performance of DSCs based on nickel selenides CE can be further improved. Therefore, the further enhance the electrocatalytic performances of nickel selenide CEs is one of the key scientific problems. To improve the electrocatalytic performances of nic-kel selenide CEs, various synthetic techniques have been used to control their morphology and phase. Specially, previous researches have shown that NiSe2 nanomaterials exhibit good electronic conductivity and catalytic activity due to the more edge active sites. However, the DSC assembled from NiSe2 CE shows the relatively smaller fill factor than that of the DSC assembled from platinum (Pt) CE.
In this work, we have demonstrated the electrodeposition-solvothermal-selenization technique to design and fabricate NiSe2 CE. The fluorine-doped tin oxide (FTO) glass was used as substrate to synthesize Co(OH)2 films by a potentiostatic electrodeposition technique. The nickel me-tal-organic frameworks (Ni-MOF) were fabricated on the Co(OH)2 films by solvothermal method. And then selenium powder was used as sele-nium source to prepare NiSe2 nanomaterials in an argon atmosphere by selenization technique. The results from SEM, TEM, XRD patterns, and XPS spectra demonstrate that as synthesized samples are composed of the pure phase NiSe2. NiSe2 nanomaterials appear as irregular nanoparticles with the average size of about 500 nm. And NiSe2 nanomaterials uniformly grow on the surface of FTO glass, which can be directly applied as CE of DSCs. NiSe2 CE was characterized by cyclic voltammetry (CV) curves, electrochemical impedance spectroscopy (EIS), and Tafel polarization curves to analysis electrocatalytic activity. The results demonstrate that NiSe2 CE shows the narrower peak-to-peak potential separation, smaller series resistance, charge transfer resistance, the Nernst diffusion impedance, and the larger reduction peak current density and exchange current density, which indicating the excellent electrocatalytic performances of NiSe2 CE. The reason for this is likely that the pure NiSe2 nanomaterials with good crystallinity provides the more edge active sites. The adhesive strength between NiSe2 nanomaterials and FTO glass have been enhanced by the fabrication technique, which is beneficial to facilitate the electron transfer. In addition, the photovoltaic performance of DSCs was carried out by photocurrent-voltage curves. It is found that the DSC based on NiSe2 CE exhibits the high photovoltaic performance, and achieves the larger energy conversion efficiency of 7.63% than that of the DSC with Pt CE (7.21%). In particular, the fill factor of DSCs is effectively improved from 0.65 to 0.70, due to the small total resistance of NiSe2 CE.
NiSe2 CE has been successfully designed and synthesized by the electrodeposition-solvothermal-selenization technique. As-prepared NiSe2 CE exhibits the excellent electrocatalytic performances, resulting in improving the photovoltaic performance of DSCs. Moreover, the fill factor of DSCs with NiSe2 CE has been effectively improved by the technique.
Key words:  nickel diselenide    dye-sensitized solar cells    electrodeposition    solvothermal    selenization
               出版日期:  2019-12-25      发布日期:  2019-10-28
ZTFLH:  TM914.4  
基金资助: 国家自然科学基金青年基金(61804062);淮阴工学院自然科学基金(17HGZ003)
作者简介:  蒋青松,淮阴工学院,讲师。2014年6月毕业于华中科技大学,获得光学专业理学博士学位。同年加入淮阴工学院工作至今。以第一作者在国内外学术期刊上发表SCI论文16篇,申请国家发明专利10项,其中授权4项。研究工作主要围绕光子晶体,开展关于染料敏化太阳能电池、钙钛矿太阳能电池的应用研究。主持包括国家自然科学基金青年项目、江苏省高校自然科学研究面上项目以及江苏省高校优秀中青年教师和校长境外研修项目等。
引用本文:    
蒋青松, 陈俊文, 杨子莹, 李文波, 程文杰, 胡光. 利用电沉积-溶剂热-硒化技术提高基于二硒化镍对电极的染料敏化太阳能电池的填充因子[J]. 材料导报, 2019, 33(24): 4040-4045.
JIANG Qingsong, CHEN Junwen, YANG Ziying, LI Wenbo, CHENG Wenjie, HU Guang. Improved Fill Factor of Dye-sensitized Solar Cells with Nickel Diselenide Counter Electrode by Electrodeposition-Solvothermal-Selenization Technique. Materials Reports, 2019, 33(24): 4040-4045.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100196  或          http://www.mater-rep.com/CN/Y2019/V33/I24/4040
1 Freitag M, Teuscher J, Saygili Y, et al. Nature Photonics, 2017, 11(6), 372.2 Roose B, Pathak S, Steiner U. Chemical Society Reviews, 2015, 44, 8326.3 Yun S, Hagfeldt A, Ma T L. Advanced Materials, 2014, 26, 6210.4 Hou S, Cai X, Wu H, et al. Energy & Environmental Science, 2013, 6, 3356.5 Zhang T L, Chen H, Su C Y, et al. Journal of Materials Chemistry A, 2013, 1, 1724.6 Jeong I, Lee J, Joseph K L V, et al. Nano Energy, 2014, 9, 392.7 Chen L, Dai H, Zhou Y, et al. Chemical Communications, 2014, 50, 14321.8 Pan J, Wang L, Yu J C, et al. Chemical Communications, 2014, 50, 70209 Ke W, Fang G J, Tao H, et al. ACS Applied Materials & Interfaces, 2014, 6, 5525.10 Lee L T L, He J, Wang B, et al. Scientific Reports, 2014, 4, 4063.11 Feng C, Jin Z, Zhang M, et al. Electrochimica Acta, 2018, 281, 237.12 Chen X, Tang Q W, He B, et al. Angewandte Chemie-International Edition, 2014, 53, 10799.13 Tang Q W, Zhang H, Meng Y, et al. Angewandte Chemie, 2015, 127, 11610.14 Lu M, Yuan X P, Guan X H, et al. Journal of Materials Chemistry A, 2017, 5, 3621.15 Duan Y, Tang Q W, He B, et al. Nanoscale, 2014, 6, 12601.16 Ji I A, Choi H M, Bang J H. Materials Letters, 2014, 123, 51.17 Lee C T, Peng J D, Li C T, et al. Nano Energy, 2014, 10, 201.18 Wang F M, Li Y C, Shifa T A, et al. Angewandte Chemie, 2016, 128, 7033.19 Gong F, Xu X, Li Z Q, et al. Chemical Communications, 2013, 49, 1437.20 Che H B, Liu X H, Gao Y F, et al. Journal of Alloys and Compounds, 2017, 705, 645.21 Deng T, Lu Y, Zhang W, et al. Advanced Energy Materials, 2018, 8, 1702294.22 Liu X, Liu Y, Fan L Z. Journal of Materials Chemistry A, 2017, 5, 15310.23 Zou K Y, Liu Y C, Jiang Y F, et al. Inorganic Chemistry, 2017, 56, 6184.24 Hsu S H, Li C T, Chien H T, et al. Scientific Reports, 2014, 4, 6983.25 Jia J, Wu J, Dong J, et al. Solar Energy, 2017, 151, 61.26 Xu Y, Li B, Zheng S, et al. Journal of Materials Chemistry A, 2018, 6, 22070.27 Jiang Q S, Chen R, Chen H, et al. Journal of Materials Science, 2018, 53, 7672.28 Jiang Q S, Pan K, Lee C S, et al. Electrochimica Acta, 2017, 235, 672.29 Jiang Q S, Chen R T, Li W B, et al. Journal of Inorganic Materials, 2018, 33(8), 832(in Chinese).蒋青松, 陈若婷, 李文波, 等. 无机材料学报, 2018, 33(8), 832.30 Park S K, Kim J K, Kang Y C. Journal of Materials Chemistry A, 2017,5, 18823.31 Song D, Wang H, Wang X, et al. Electrochimica Acta, 2017, 254, 230.32 Ming F, Liang H, Shi H, et al. Journal of Materials Chemistry A, 2016, 4, 15148.33 Tang Q W, Zhang L, He B, et al. Chemical Communications, 2016, 52, 3528.34 Liu T, Zhao Y, Duan J, et al. Solar Energy, 2018, 170, 762.35 Wang X W, Xie Y, Pan K, et al. ACS Applied Nano Materials, 2018, 1, 4900.36 Bao C, Li F, Wang J, et al. ACS Applied Materials & Interfaces, 2016, 8, 32788.
[1] 贾卫平, 吴蒙华, 贾振元, 董桂馥, 李晓鹏, 周绍安. 超声功率对多场耦合作用下脉冲电沉积Ni-ZrO2纳米复合镀层性能的影响[J]. 材料导报, 2020, 34(2): 2017-2022.
[2] 王一雍, 周新宇, 金辉, 梁智鹏. 超声辅助电沉积Ni-Co/Y2O3复合镀层的电化学研究[J]. 材料导报, 2019, 33(6): 1011-1016.
[3] 姚天宇, 杨海燕, 周素洪, 叶兵, 蒋海燕. 镁合金表面电沉积铝工艺的研究进展[J]. 材料导报, 2019, 33(3): 470-478.
[4] 赵林艳, 席晓丽, 樊佑书, 马立文. 纳米氧化钨的水热/溶剂热法制备及应用的综述[J]. 材料导报, 2019, 33(19): 3203-3209.
[5] 侯芹芹, 江元汝, 甘俊羊, 赵亚娟, 赵彬, 韩彤. 溶剂热法合成La1.9Y0.06Mo2O9∶Eu3+Sm3+荧光粉及其能量传递机理[J]. 材料导报, 2019, 33(12): 1939-1944.
[6] 刘仪柯, 唐雅琴, 蒋良兴, 刘芳洋, 秦 勤, 张 坤. 溅射Cu-Zn-Sn金属预制层后硫(硒)化法制备Cu2ZnSn(SxSe1-x)4薄膜及其光伏特性[J]. 《材料导报》期刊社, 2018, 32(9): 1412-1416.
[7] 吴亚丹, 胡圳, 赵丽, 王世敏, 董兵海, 王二静, 郭海永. 上转换发光材料La(OH)3∶Er3+/Yb3+的制备及在染料敏化太阳能电池中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 708-714.
[8] 郭亚杰, 叶锋, 郭栋, 李帆, 李志浩. 纳米混杂结构NiSe2高效析氢电极制备及其电化学性能[J]. 材料导报, 2018, 32(23): 4084-4088.
[9] 何云龙, 沈沪江, 王炜, 袁慧慧. 柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池关键电极材料研究进展[J]. 材料导报, 2018, 32(21): 3677-3688.
[10] 魏永生, 王茂森, 康健, 马瑞欣, 韦露, 李建伟, 赵新生. 电沉积法制备三维泡沫镍负载钴催化剂及其工艺条件优化[J]. 材料导报, 2018, 32(19): 3304-3308.
[11] 谭海军, 何敬文, 裴海睿, 李和平, 张淑芬, 张淑华. 吩噻嗪和吩噁嗪给电子体在染料敏化太阳能电池中的性能对比分析[J]. 材料导报, 2018, 32(15): 2538-2541.
[12] 李昱煜,沈沪江,刘岩,王炜,袁慧慧,谢华清. PEDOT基对电极染料敏化太阳能电池研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 19-25.
[13] 罗军, 沈晓楠, 庞盼, 廖斌, 吴先映, 张旭. MEVVA离子注入铁镍银对DSSCs光电性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 1-6.
[14] 周阳, 金秋, 龚小玲, 聂朝胤. Ni-金刚石复合涂层的结构优化及基础磨削性能*[J]. 《材料导报》期刊社, 2017, 31(20): 35-38.
[15] 杨小洁, 董兵海, 陈凤翔, 万丽, 赵丽, 王世敏. 一维二氧化钛光阳极的制备及在染料敏化太阳能电池中的应用综述*[J]. 《材料导报》期刊社, 2017, 31(17): 138-145.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed