Please wait a minute...
材料导报  2019, Vol. 33 Issue (19): 3203-3209    https://doi.org/10.11896/cldb.18060143
  无机非金属及其复合材料 |
纳米氧化钨的水热/溶剂热法制备及应用的综述
赵林艳, 席晓丽, 樊佑书, 马立文
北京工业大学材料科学与工程学院,北京 100124
Review of Recent Progress in the Synthesis of Nano-tungsten Oxide via Hydrothermal/Solvothermal Method and the Application
ZHAO Linyan, XI Xiaoli, FAN Youshu, MA Liwen
Department of Material Science and Engineering, Beijing University of Technology, Beijing 100124
下载:  全 文 ( PDF ) ( 1971KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为一种廉价的过渡金属氧化物,氧化钨具有良好的光致变色、电致变色、光催化、超电容等性能,被广泛应用于智能窗、催化剂、太阳能电池、气敏传感设备等方面。纳米氧化钨具有许多独特的性质,如大比表面积、变化的表面能及量子限域效应,这使得近年来制备纳米级氧化钨材料成为研究热点。纳米氧化钨的制备方法众多,主要分为气相法、液相法、固相法等。水热/溶剂热法又被称为热液法,是指在密闭容器内通过加热产生高压环境,在高温、高压的作用下实现水热晶体生长、水热合成及水热烧结的一种常用的制备方法。相比固相烧结过程,水热/溶剂热过程的合成温度较低,从而使晶体在生长过程中产生较少的缺陷;相比常压加热法,水热/溶剂热过程中较高的合成压力使晶体在生长过程中具有较高的结晶度,且在高温、高压环境下,反应物的性质也会发生变化,从而生成常压下无法生成的产物。此外,水热/溶剂热过程中较强的对流会使得传质更加均匀和快速,更小的温度梯度也会使晶体生长具有更高的生长速率以及均匀性。
水热/溶剂热法正是由于具有经济环保、操作简便且产物粒径小、纯度高、形貌易于控制等优点,越来越受到研究者的青睐,逐渐成为制备氧化钨产物的主要方法之一,常被用来制备维度不同、形貌各异的氧化钨产物。通过有选择性地使用不同类型的添加剂,或通过改变实验条件、参数等方法,甚至通过多种掺杂,来调控氧化钨形貌。制备过程的多样化导致产物生长过程及反应机理存在多样性,如各向同性生长、择优生长(封端剂造成的)、过饱和驱动、自组装(Ostwald、Gibbs-Tomson、表面能趋于降低)等生长机理。氧化钨产物在经过结构、形貌改善后,用途更为广泛,除传统应用于智能窗、催化剂、太阳能电池、气敏传感设备等方面外,近年在荧光传感、生物成像、光致变色墨水、核辐射废水处理等方面也应用颇多。综上,水热/溶剂热法制备氧化钨产物在该领域具有重要地位,有必要对其进行系统的归纳与总结。
因此本文从水热/溶剂热法角度出发,在介绍不同结构纳米氧化钨制备过程的基础上,对其生长机理及应用性能进行阐述,综述近年来国内外用水热/溶剂热法制备纳米氧化钨的现状,并展望了其发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵林艳
席晓丽
樊佑书
马立文
关键词:  纳米  氧化钨  水热  溶剂热    
Abstract: As a kind of cheap transition metal oxide, tungsten oxide has good performance in photochromic, electrochromic, photocatalytic, and ultra-capacitor and is widely used in smart windows, catalysts, solar cells, and gas-sensitive sensing equipment, etc. Tungsten oxide with nano structure possesses many unique properties, such as the increased specific surface area, changed surface energy, and quantum limited-domain effects, which has made the fabrication of nano-tungsten oxide become a hot spot in recent years. There are many methods for preparing nano-tungsten oxide, including gas phase method, liquid phase method, solid phase method, etc. Hydrothermal/solvethermal method refers to a me-thod that crystal growth, synthesis, and sintering under the condition of high temperature and high pressure in a closed container by heating to produce a high-pressure environment. Compared with solid phase sintering, hydrothermal/solvethermal method makes the crystal less defects during the growth process for its lower synthetic temperature; compared with the atmospheric pressure heating method, hydrothermal/solvethermal method makes the crystal more crystallinity for its higher synthetic pressure, and furthermore, the method can induce the formation of new products since the properties of reactant may changed in a high-temperature and high-pressure environment. Moreover, the strong convection during hydrothermal/solvethermal can make the mass transfer more uniform and rapid, and the smaller temperature gradient can also make the crystal growth higher and more uniform.
Because of the advantages of environmental, low-cost, facile processes, and easy control of products, hydrothermal/solvethermal method are more and more popular and are becoming the main method for preparing tungsten oxide with different dimensions, morphologies and structures. In order to control the structure and morphology of oxide, people often choose different kinds of additives selectively; or change experimental conditions, parameters; even through various doping. The diversification of preparation led to the diversity of the growth mechanism, such as isotro-pic growth, preferentially grow caused by capping agent, driving force of supersaturation, self-assembling (Ostwald ripening, Gibbs-Tomso law, decreasing surface area). In addition to the traditional applications, it is also reported that tungsten oxide can be used in fluorescence sensor, bio-imaging, photochromic inks, and nuclear fuel cycle after the improvement of their structure and morphology recently. Above all, there are obviously advantages of preparation tungsten oxide by hydrothermal/solvethermal method. Thus, it is necessary to make a systematic summary of this field.
In the paper, the formation mechanism and application properties of tungsten oxide, which synthesized by hydrothermal/solvothermal method are presented and summarized based on their different structures, and also the research and develop trend are prospected.
Key words:  nanometer    tungsten oxide    hydrothermal    solvothermal
               出版日期:  2019-10-10      发布日期:  2019-08-15
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(51422401;51621003;51702008);北京市教委科技项目(KM201810005009)
作者简介:  赵林艳,2016年7月毕业于北京工业大学,获工学学士学位。现为北京工业大学材料科学与工程学院硕士研究生,在席晓丽教授的指导下进行研究。目前主要研究领域为氧化钨的制备及应用。席晓丽,北京工业大学材料科学与工程学院教授、博士研究生导师。xixiaoli@bjut.edu.cn.马立文,北京工业大学材料科学与工程学院副教授、硕士研究生导师。2006年7月获中南大学冶金工程学士学位,2011年7月获中南大学冶金物理化学博士学位。目前主要从事的研究方向为金属二次资源分离回收理论与技术,包括废弃金属材料分离过程的理论、金属分离新技术及新型分离材料制备。承担国家863课题,参加国家自然科学基金、北京市自然科学基金、北京市科技计划课题等项目。发表学术论文20余篇,授权国家专利10余项、国际专利2项。
引用本文:    
赵林艳, 席晓丽, 樊佑书, 马立文. 纳米氧化钨的水热/溶剂热法制备及应用的综述[J]. 材料导报, 2019, 33(19): 3203-3209.
ZHAO Linyan, XI Xiaoli, FAN Youshu, MA Liwen. Review of Recent Progress in the Synthesis of Nano-tungsten Oxide via Hydrothermal/Solvothermal Method and the Application. Materials Reports, 2019, 33(19): 3203-3209.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060143  或          http://www.mater-rep.com/CN/Y2019/V33/I19/3203
1 Solonin Y M, Khyzhun O Y, Graivoronskaya E A. Crystal Growth & Design,2001,1(6),473.2 Huang K, Pan Q, Yang F, et al. Journal of Physics D-Applied Physics,2008,41,155417.3 Kondalkar V V, Mali S S, Kharade R R, et al. Dalton Transactions,2015,44(6),2788.4 Rout C S, Hegde M, Rao C N R. Sensors and Actuators B-Chemical,2008,128(2),488.5 Li Q, Wang L, Chu D, et al. Ceramics International,2014,40(3), 4969.6 Cao S, Chen H. Journal of Alloys and Compounds,2017,702,644.7 Li J, Liu X, Cui J, et al. ACS Applied Materials & Interfaces,2015,7(19),10108.8 Yin C, Zhu S, Yao F, et al. Journal of Nanoparticle Research,2013,15,18128.9 Epifani M, Comini E, Diaz R, et al. ACS Applied Materials & Interfaces,2014,6(19),16808.10 Zhan Y, Liu Y, Liu Q, et al. Sensors and Actuators B-Chemical,2018,255(1),290.11 Le Houx N, Pourroy G, Camerel F, et al. The Journal of Physical Che-mistry C,2009,114(1),155.12 Wang H, Ding R, Wang C, et al. CrystEngComm,2017,19(28),3979.13 Wang Y, Wang X, Xu Y, et al. Small, DOI.org/10.1002/smll.201700623.14 Zhou Y, Huang A, Ji S, et al. Chemistry-An Asian Journal,2018,13(4),457.15 Kong Y, Sun H, Zhao X, et al. Applied Catalysis A-General,2015,505,44716 Cong S, Geng F, Zhao Z. Advanced Materials,2016,28(47),10518.17 Wang J, Khoo E, Lee P S, et al. Journal of Physical Chemistry C,2008,112(37),14306.18 Phuruangrat A, Ham D J, Hong S J, et al. Journal of Materials Chemistry,2010,20(9),1683.19 Li J, Zhu J, Liu X. New Journal of Chemistry,2013,37(12),4241.20 Chen Z, Wang Q, Wang H, et al. Advanced Materials,2013,25(14),2095.21 Wang J, Khoo E, Lee P S, et al. Journal of Physical Chemistry C,2009,113(22),9655.22 He J, Liu H, Xu B, et al. Small,2015,11(9-10SI),1144.23 Guo C, Yin S, Yan M, et al. Inorganic Chemistry,2012,51(8),4763.24 Xi G, Ouyang S, Li P, et al. Angewandte Chemie-International Edition,2012,51(10),2395.25 Zhou H, Shi Y, Dong Q, et al. Journal of Physical Chemistry C,2014,118(35),20100.26 Sun Y, Wang W, Qin J, et al. Electrochimica Acta,2016,187,329.27 Zheng J Y, Song G, Kim C W, et al. Nanoscale,2013,5(12),5279.28 Ng C Y, Razak K A, Lockman Z. Journal of Alloys and Compounds,2014,588,585.29 Gu Z, Li H, Zhai T, et al. Journal of Solid State Chemistry,2007,180(1),98.30 Li X, Zhang G, Cheng F, et al. Journal of the Electrochemical Society,2006,153(7),H133.31 Guo C, Yin S, Huang Y, et al. Langmuir,2011,27(19),12172.32 Pokhrel S, Simion C E, Teodorescu V S, et al. Advanced Functional Materials,2009,19(11),1767.33 Zhou H, Shi Y, Dong Q, et al. Journal of Materials Chemistry A,2014,2(12),4347.34 Liu J, Margeat O, Dachraoui W, et al. Advanced Functional Materials,2014,24(38),6029.35 Li G, Zhang S, Guo C, et al. Nanoscale,2016,8(18),9861.36 Lian C, Xiao X, Chen Z, et al. Nano Research,2016,9(2),435.37 Zhang J, Tu J, Xia X, et al. Journal of Materials Chemistry,2011,21(14),5492.38 Zhou H, Shi Y, Wang L, et al. Chemical Communications,2013,49(69),7626.39 Late D J, Kashid R V, Rout C S, et al. Applied Physics A-Materials Science & Processing,2010,98(4),751.40 Zhu M, Meng W, Huang Y, et al. ACS Applied Materials & Interfaces,2014,6(21),18901.41 Tian Y, Cong S, Su W, et al. Nano Letters,2014,14(4),2150.42 Sun K, Peng H, Mu J, et al. Ionics,2015,21(8),2309.43 Su J, Feng X, Sloppy J D, et al. Nano Letters,2011,11(1),203.44 Wei J, Jiao X, Wang T, et al. Journal of Materials Chemistry C,2015,3(29),7597.45 Zeng W, Li Y, Miao B, et al. Physica E: Low-Dimensional Systems and Nanostructures,2014,56,183.46 Zheng J Y, Song G, Hong J, et al. Crystal Growth & Design,2014,14(11),6057.47 Huang J, Xiao L, Yang X. Materials Research Bulletin,2013,48(8),2782.48 Kondalkar V V, Kharade R R, Mali S S, et al. Superlattices and Microstructures,2014,73,290.49 Li Y, Tang Z, Zhang J, et al. Applied Catalysis B-Environmental,2017,207,207.50 Liu Y, Li Q, Gao S, et al. CrystEngComm,2014,16(32),7493.51 Hai G, Huang J, Cao L, et al. Journal of Alloys and Compounds,2017,690,239.52 Cai G F, Tu J P, Zhou D, et al. Solar Energy Materials and Solar Cells,2014,124,103.53 Huang J, Xu X, Gu C, et al. Materials Research Bulletin,2012,47(11),3224.54 Park S, Shim H, Lee C W, et al. Nano Research,2016,9(3),633.55 Li H, Bian Z, Zhu J, et al. Journal of the American Chemical Society,2007,129(27),8406.56 Bai H, Su N, Li W, et al. Journal of Materials Chemistry A,2013,1(20),6125.57 Seifollahi B M, Hojamberdiev M, Morita K, et al. Journal of the American Chemical Society,2013,135(11),4467.58 Nozik A J. Annual Review of Physical Chemistry,1978,29(1),189.59 Wang F, Di Valentin C, Pacchioni G. Journal of Physical Chemistry C,2012,116(16),8901.60 Reis K P, Ramanan A, Whittingham M S. Chemistry of Materials,1990,2(3),219.61 Griffith C S, Luca V. Chemistry of Materials,2004,16(24),4992.62 Supothina S, Rattanakam R, Suwan M. Microelectronic Engineering,2013,108,182.63 Hu W, Zhao Y, Liu Z, et al. Chemistry of Materials,2008,20(17),5657.64 Cui Z, Zeng D, Tang T, et al. Journal of Hazardous Materials,2010,183(1-3),211.65 Gui M, Zhang W, Chang Y, et al. Chemical Engineering Journal,2012,197,283.66 Guo C, Yin S, Dong Q, et al. Nanoscale,2012,4(11),3394.67 Suwan M, Supothina S. Micro & Nano Letters,2014,9(12),877.68 Supothina S, Suwan M, Wisitsoraat A. Microelectronic Engineering,2014,126,88.69 Liu G, Zhao Y, Sun C, et al. Angewandte Chemie-International Edition,2008,47(29),5277.70 Khan R, Kim T. Journal of Hazardous Materials,2009,163(2-3),1179.71 Xi G, Yue B, Cao J, et al. Chemistry-A European Journal,2011,17(18),5145.72 Mu W, Yu Q, Li X, et al. Chemical Engineering Journal,2017,319,170.73 Gao L, Qu F, Wu X. Journal of Materials Chemistry A,2014,2(20),7367.74 Gong H, Zheng F, Xu J, et al. Electrochimica Acta,2018,263,409.75 Puddu V, Mokaya R, Puma G L. Chemical Communications,2007(45),4749.76 Miyauchi M, Nukui Y, Atarashi D, et al. ACS Applied Materials & Interfaces,2013,5(19),9770.77 Li H, Tu W, Zhou Y, et al. Advanced Science, DOI: 10.1002/advs.201500389.78 Umena Y, Kawakami K, Shen J, et al. Nature,2011,473(7345),55.79 Yu J, Wanga S, Lowa J, et al. Physical Chemistry Chemical Physics,2013,15(39),16883.80 He Y, Zhang L, Wang X, et al. RSC Advances,2014,4(26),13610.81 Katsumata H, Tachi Y, Suzuki T, et al. RSC Advances,2014,4(41),21405.82 Zhao Z, Miyauchi M. Angewandte Chemie-International Edition,2008,47(37),7051.83 Zhao Z, Miyauchi M. Journal of Physical Chemistry C,2009,113(16),6539.84 Fu L, Cai W, Wang A, et al. Materials Letters,2015,142,201.85 Li F, Qin Q, Zhang N, et al. Sensors and Actuators B-Chemical,2017,244,837.86 Shen X, Wang G, Wexler D. Sensors and Actuators B: Chemical,2009,143(1),325.87 Li X, Mu W, Xie X, et al. Journal of Hazardous Materials,2014,264,386.88 Liu B, Mu W, Xie X, et al. RSC Advances,2015,5(20),15603.89 Wang Y, Thuiyan H, Duan S, et al. ACS Sustainable Chemistry & Engineering,2018,6(2),2462.90 Zhang W, Yue L, Zhang F, et al. Journal of Materials Chemistry A,2015,3(11),6102.91 Yoon S, Woo S, Jung K, et al. Journal of Alloys and Compounds,2014,613,187.92 Yu M, Sun H, Sun X, et al. Materials Letters,2013,108,29.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[3] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[4] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[5] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[6] 王坤宇, 冯运莉, 柳昆. 纳米复相永磁材料的研究进展[J]. 材料导报, 2019, 33(z1): 116-121.
[7] 王若男, 刘斌, 陈爱强, 杨文哲, 马晓燕. 纳米流体液滴在铁板上蒸发的动力学研究[J]. 材料导报, 2019, 33(z1): 132-135.
[8] 吴成宝, 林列书, 李慎兰, 盖国胜, 杨玉芬. 表面纳米修饰重质碳酸钙的制备及形貌特征和粒度表征[J]. 材料导报, 2019, 33(z1): 149-152.
[9] 原禧敏, 杨宏伟, 李郁秀, 巢云秀, 李耀, 陈家林, 陈力. 无卤素离子辅助合成纳米银线及其在柔性透明导电薄膜中的应用[J]. 材料导报, 2019, 33(z1): 300-302.
[10] 李志航, 宁洪龙, 李晓庆, 陶瑞强, 刘贤哲, 蔡炜, 陈建秋, 王磊, 姚日晖, 彭俊彪. 基于多成核机制的银纳米线制备研究[J]. 材料导报, 2019, 33(z1): 303-306.
[11] 巢云秀, 杨宏伟, 原禧敏, 李郁秀, 李耀. 花枝状纳米银的制备及对4-硝基苯酚加氢反应的催化性能[J]. 材料导报, 2019, 33(z1): 307-309.
[12] 姚旭, 张光友, 刘博, 谢拯, 王煊军. 基于纳米金生长比色检测水体中的肼[J]. 材料导报, 2019, 33(z1): 310-313.
[13] 张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
[14] 王怡心, 马勤, 贾建刚, 高昌琦, 张瑄瑄. Half-Heusler热电材料性能优化策略及研究进展[J]. 材料导报, 2019, 33(z1): 403-407.
[15] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed