Please wait a minute...
材料导报  2019, Vol. 33 Issue (23): 3955-3962    https://doi.org/10.11896/cldb.18120204
  金属及金属基复合材料 |
Fe-基形状记忆合金的研究进展
邹芹1,2, 党赏1, 李艳国2, 王明智2, 熊建超1
1 燕山大学机械工程学院,秦皇岛 066004
2 燕山大学亚稳材料制备技术与科学国家重点实验室,秦皇岛 066004
Research Progress of Iron-based Shape Memory Alloys: a Review
ZOU Qin1,2, DANG Shang1, LI Yanguo2, WANG Mingzhi2, XIONG Jianchao1
1 School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004
2 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004
下载:  全 文 ( PDF ) ( 1571KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 根据实际应用价值将形状记忆合金分为三类:NiTi-基、Cu-基和Fe-基合金。NiTi-基形状记忆合金在记忆合金应用领域一直处于统治地位,但其材料成本高、冷加工性能差;Cu-基形状记忆合金热加工性能和形状记忆效应均较好且价格低廉,但存在记忆性能不稳定、晶粒粗大、抗疲劳性能差等缺陷,阻碍了其研究和应用;Fe-基形状记忆合金自开发以来因其价格低廉、加工性能优良、可焊接性好等特点,备受人们青睐,被确定为具有发展前景的新型形状记忆材料。
Fe-基形状记忆合金中的马氏体相变主要分为三种,分别是由面心立方fcc(γ)→面心正方fct、体心正方bct和密排六方hcp(ε)。因fcc(γ)→fct马氏体相变及其逆相变而呈现形状记忆效应的合金有Fe-Pd和Fe-Pt;因fcc(γ)→bct马氏体相变及其逆相变而呈现形状记忆效应的合金有Fe-Ni-Ti-C和Fe-Ni-Co-Ti ;因fcc(γ)→hcp(ε)中的Pd、Pt价格昂贵,故其实用意义不是很大,不作为研究和应用的热点。由于Fe-Mn-Si系形状记忆合金的马氏体起始相变温度(Ms)接近室温、形状记忆效应相对较好,因此具有很好的应用前景。但此类合金存在相对较低的Ms以及明显的滞后现象限制了它们的广泛使用。Fe-Ni-Co-Ti马氏体界面的能动性不因热滞大小而改变,通过冷却或加热使移动的马氏体界面长大或收缩。基于Fe-Ni-Co-Ti合金超弹性的研究开发的新型Fe-Mn-Al-Ni合金所表现的超弹性更加优异,Fe-Mn-Al-Ni合金在室温下具有低应力滞后的超弹性响应,主要特征是:在-196~240 ℃温度范围内,诱导马氏体转变所需的应力对温度依赖性较低,大大拓宽了Fe-基形状记忆合金的应用。
本文分类介绍了Fe-基形状记忆合金近年来的研究进展以及相关性能,尤其对Fe-Mn-Si系形状记忆合金中各元素对合金的影响进行了详细的介绍,以期在合金的成分设计方面为相关研究人员提供参考,并提出了现阶段Fe-基形状记忆合金所存在的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邹芹
党赏
李艳国
王明智
熊建超
关键词:  形状记忆效应  马氏体相变  合金元素  非热弹性    
Abstract: Shape memory alloys are classified into three categories according to practical application values: NiTi-based alloys, Cu-based alloys and Fe-based alloys. The field of shape memory alloys has been dominated by NiTi alloys. However, NiTi-based shape memory alloys have the di-sadvantages of high material cost and poor cold workability. The Cu-based shape memory alloys have good hot workability and shape memory effect, but the Cu-based shape memory alloy have unstable memory performance, coarse grain and poor fatigue resistance, which hinders its research and application. Fe-based shape memory alloys have attracted much attention for their low cost, excellent workability and good weldability, and have been identified as a new shape memory material with promising development.
The martensitic transformation of Fe-based shape memory alloys is mainly divided into three types, namely, face-centered cubic fcc (γ) → face-centered square fct, body-centered square bct, and close-packed hexagonal hcp (ε). Alloys with fcc(γ)→fct martensitic transformation and reverse phase transformation to achieve shape memory effect are Fe-Pd and Fe-Pt alloys. Alloys obtained by fcc(γ)→bct martensitic transformation and reverse phase transformation to obtain shape memory effects include Fe-Ni-Ti-C and Fe-Ni-Co-Ti alloys. The shape memory effect of the Fe-Mn-Si alloy exhibites the fcc(γ)→hcp(ε) martensitic transformation and its reverse phase transformation. Because Pd and Pt are expensive, the Fe-Pt/Fe-Pd shape memory alloys are not very practical and only used for academic research. Fe-Mn-Si shape memory alloy has a phase transition temperature close to room temperature and a relatively good shape memory effect, which makes it have a good application prospect. Because of Ms and large hysteresis, it hinders the wide range of applications of Fe-based shape memory alloys. However, the Fe-Ni-Co-Ti martensite interface has a initiative that does not change due to the thermal hysteresis. When the alloy is cooled or heated, it grows and contracts due to the movement of the martensite interface. Major success is now within reach with new class of Fe-Mn-Al-Ni alloys on the basis of the superelastic study of Fe-Ni-Co-Ti alloy. They exhibit superior superelastic properties and undergo superelasticity response at room temperature with low stress hysteresis. One of the characteristics of Fe-Mn-Al-Ni alloy is that the stress required to induce martensitic transformation has a low temperature dependence over a broad range, -196 ℃ to 240 ℃. This greatly broadens the application of Fe-based SMAs.
In this paper, the research progress of Fe-based shape memory alloys and their related properties are introduced in recent years. In particular, the effects of various elements in Fe-Mn-Si shape memory alloys on alloys are introduced in detail, which is related to the composition design of alloys. In the aspect of alloy composition design, this paper provides a reference for relative researchers and points out the existing problems at the present stage.
Key words:  shape memory effect    martensitic transformation    alloying elements    nonthermoelastic
               出版日期:  2019-12-10      发布日期:  2019-09-30
ZTFLH:  TB381  
基金资助: 河北省自然科学基金资助项目(E2015203232);“河北省首批青年拔尖人才支持计划”资助项目(冀组字[2016]9号文件);“丹凤朝阳人才计划”(丹人才办[2019]3号)资助
作者简介:  邹芹,燕山大学机械工程学院教授、博士研究生导师,Anianet会员、AVS会员、 美国化学学会会员、日本应用物理学会会员、中国物理学会会员、中国材料大会会员。2001年本科毕业于燕山大学材料科学与工程学院,2008年3月取得高知工科大学(日本)光电子学院博士学位,回国后,任教于燕山大学,先后入选河北省“首批拔尖青年人才计划”和河北省“三三三人才工程”项目。主要从事新型超硬刀具、自润滑轴承以及新型高熵合金领域的研究工作。近年来,在有关领域发表论文60余篇;发明专利14项,参与出版专著一项。
王明智,燕山大学机械工程学院研究员、博士研究生导师。多年来从事超硬材料及超硬复合材料、特种化合物相关内容的科学研究,自1994年作为项目负责人先后承担和完成了国家自然科学基金项目(SiC、Si3N4中介的亚稳态ZrO2超硬复相陶瓷)、国家攻关项目(超硬材料镀覆技术)、教育部博士点基金项目(等离子放电烧结PcBN物相行为的研究)、省自然科学基金(SPS非高压条件烧结PcBN的研究(重点项目)及政府攻关项目(机械合金化提高金属结合剂金刚石工具烧结质量的研究)等各类项目,先后在国内外发表科技论文90余篇,其中SCI收录30余篇;获得机械工业部科技进步二等奖一项,国家教委科技进步三等奖一项,河北省科技进步二等奖一项、三等奖一项。于1995年获得机械工业部授予的中国科技专家称号,于1998年享受国务院颁发的政府特殊津贴,河北省三育人先进个人。
引用本文:    
邹芹, 党赏, 李艳国, 王明智, 熊建超. Fe-基形状记忆合金的研究进展[J]. 材料导报, 2019, 33(23): 3955-3962.
ZOU Qin, DANG Shang, LI Yanguo, WANG Mingzhi, XIONG Jianchao. Research Progress of Iron-based Shape Memory Alloys: a Review. Materials Reports, 2019, 33(23): 3955-3962.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120204  或          http://www.mater-rep.com/CN/Y2019/V33/I23/3955
1 Jani J M, Leary M, Subic A, et al. Materials & Design,2014,56(4)1078.2 Xu Z Y, Jiang B H. Shape memory materials, Shanhai Jiaotong University Press, China,2000(in Chinese).徐祖耀,江伯鸿.形状记忆材料,上海交通大学出版社,2000.3 Huang P, Peng H B, Wen Y H. Metallic Functional Materials,2016,23(3),31(in Chinese).黄攀,彭华备,文玉华.金属功能材料,2016,23(3),31.4 Otsuka K, Kakeshita T. MRS Bulletin,2002,27(2),91.5 Buehler W J, Gilfrich J V, Wiley R C. Journal of Applied Physics,1963,34(5),1475.6 Otsuka K. Japanese Journal of Applied Physics,1971,10(5),571.7 Vollmer M, Krooß P, Kriegel M J, et al. Scripta Materialia,2016,114,156.8 Kazuhiro O, Wayman C M. Shape memory materials, Cambridge University Press,UK,1999.9 Maki T, Kobayashi K, Minato M, et al. Scripta Metallurgica,1984,18(10),1105.10 Tanaka Y, Himuro Y, Kainuma R, et al. Science,2010,327(5972),1488.11 Ebara M. Smart biomaterials, Springer Japan, Japan,2014.12 Titenko A, Demchenko L, Kozlova L, et al. In: Proceedings of the International Conference on Martensitic Transformations. Chicago,2018,pp.115.13 Zou Q, Li R, Li Y G, et al. Journal of Yanshan University,2019,43(2),95(in Chinese).邹芹,李瑞,李艳国,等.燕山大学学报,2019,43(2),95.14 Mihalache E, Pricop B, Suru M G, et al. In: ESOMA 2015-10th Euro-pean Symposium on Martensitic Transformations.Belgium,2015,pp.04002.15 Saito T, Gąska K, Takasaki A, et al. Science Direct,2010,30(1),62.16 Pricop B, Söyler U, Comneci R I, et al. Physics Procedia,2010,10(12),125.17 Xu Z, Hodgson M A, Cao P. Materials Science & Engineering A,2015,630,116.18 Sánchez-Alarcos V, Recarte V, Pérez-Landazábal J I, et al. Acta Mate-rialia,2009,57(14),4224.19 Stern R A, Willoughby S D, Maclaren J M, et al. Journal of Applied Physics,2003,93(10),8644.20 Marioni M A, O Handley R C, Allen S M. Journal of Applied Physics,2002,91(10),7807.21 Fukuda T, Yamamoto M, Yamaguchi T, et al. Acta Materialia,2014,62(5),182.22 Yamamoto M, Fukuda T, Kakeshita T, et al. Journal of Alloys & Compounds,2013,577(Suppl1),S503.23 Koval Y M, Ponomaryova S O. Technical Physics,2011,56(6),881.24 Yamaguchi T, Fukuda T, Kakeshita T, et al. Applied Physics Letters,2014,104(23),131.25 Fukuda T, Kakeshita T. Scripta Materialia,2013,69(1),89.26 Murray S J, Hayashi R, Marioni M A, et al. Proceedings of SPIE-the International Society for Optical Engineering,1999,3675,204.27 Jiang B, Zhou W, Liu Y, et al. Cheminform,2003,34(49),2285.28 Jin M J, Ding H, Gu Y J, et al. International Journal of Modern Physics B,2010,24(15&16),2363.29 Titenko A N. Journal of Materials Engineering and Performance,2012,21(12),2525.30 Edalati K, Toh S, Furuta T, et al. Scripta Materialia,2012,67(5),511.31 Maki T, Furutani S, Tamura I. ISIJ International,1989,29(5),438.32 Xu Z Y. Shanghai Metals,1993,15(3),1(in Chinese).徐祖耀.上海金属,1993,15(3),1.33 Chumlyakov Y I, Kireeva I V, Poklonov V V, et al. Technical Physics Letters,2014,40(9),747.34 Lee D, Omori T, Kainuma R. Journal of Alloys & Compounds,2014,617,120.35 Lee D, Omori T, Kainuma R. Shape Memory & Superelasticity,2016,2(2),1.36 Chumlyakov Y I, Kireeva I V, Kutz O A, et al. Scripta Materialia,2016,119,43.37 Krooß P, Somsen C, Niendorf T, et al. Acta Materialia,2014,79(12),126.38 Lee D, Omori T, Han K, et al. Shape Memory & Superelasticity,2018(5972),1.39 Wan J F, Chen S P. Applied Physics,2013,3(2),31(in Chinese).万见峰,陈世朴.应用物理,2013,3(2),31.40 Lai M J, Li Y J, Lillpopp L, et al. Acta Materialia,2018,155,222.41 Qiao Z X, Liu Y C, Wang D A, et al. Journal of Materials Science & Engineering,2007,25(5),667(in Chinese).乔志霞,刘永长,王东爱,等.材料科学与工程学报,2007,25(5),667.42 Peng H, Wang G, Wang S, et al. Materials Science & Engineering A,2017,712,37.43 Liu X J, Lin X Y, Chen S R. Acta Metallurgica Sinica,1998,17(9),903(in Chinese).刘向军,林信远,陈士仁.金属学报,1998,17(9),903.44 Li J C, Jiang Q, Shen P. Journal of Functional Materials,1999,30(2),164(in Chinese).李建忱,蒋青,沈平.功能材料,1999,30(2),164.45 Wan J F, Chen S P, Xu Z Y. Acta Metallurgica Sinica,2000,36(7),679(in Chinese).万见峰,陈世朴,徐祖耀.金属学报,2000,36(7),679.46 Chen K, Jin X J. Journal of Functional Materials,2007,38(A08),3236(in Chinese).陈科,金学军.功能材料,2007,38(A08),3236.47 Zhang C Y, Song F, Wang S L, et al. Acta Metallurgica Sinica,2015,51(2),201(in Chinese).张成燕,宋帆,王珊玲,等.金属学报,2015,51(2),201.48 Lin C X, Xu K C, Zhang J Q. Materials Protection,2016,49(s1),143(in Chinese).林成新,徐凯池,张佳琪.材料保护,2016,49(s1),143.49 Koyama M, Sawaguchi T, Tsuzaki K. Materials Science & Engineering A,2011,528(6),2882.50 Li N, Wen Y H. Materials for Mechanical Engineering,1996,20(4),20(in Chinese).李宁,文玉华.机械工程材料,1996,20(4),20.51 Yang J, Wen Y H, Li N, et al. Materials Review,2006,20(2),126(in Chinese).杨军,文玉华,李宁,等.材料导报,2006,20(2),126.52 Ariapour A, Perovic D D, Yakubtsov I. Metallurgical & Materials Tran-sactions A,2001,32(7),1621.53 Yang G S, Kang F W, Ma B X, et al. Mechanical Engineers,2008(1),62(in Chinese).杨光山,康福伟,马宝霞,等.机械工程师,2008(1),62.54 Hu R, Pan H X, Li J S, et al. Transactions of Materials And Heat Treatment,2006,27(4),14(in Chinese).胡锐,潘红雄,李金山,等.材料热处理学报,2006,27(4),14.55 Liu W B, Wen Y H, Li N, et al. Journal of Alloys & Compounds,2009,472(1),591.56 Liu W B, Ning L I, Wen Y H, et al. Transactions of Nonferrous Metals Society of China,2012,22(s1-3),s193.57 Huang W G, Lu Z. Heat Treatment of Metals,2005,30(5),46(in Chinese).黄维刚,陆震.金属热处理,2005,30(5),46.58 Kubo H, Nakamura K, Farjami S, et al. Materials Science & Engineering A,2004,378(1),343.59 Zhang X,He G Q,Chen S J, et al. Shanghai Metals,2009,31(3),27(in Chinese).张熹,何国求,陈淑娟,等.上海金属,2009,31(3),27.60 Guo Q, Dong Z, Liu Z, et al. Materials Science & Technology,2014,30(12),1477.61 Li K. Study on mechanism of influence of second phase precipitation on shape memory effect of Fe-Mn-Si-Cr-Ni alloy. Master’s Thesis, Tianjin University, China,2012(in Chinese).李康.第二相析出对Fe-Mn-Si-Cr-Ni合金形状记忆效应的影响机理研究.硕士学位论文,天津大学,2012.62 Leinenbach C, Kramer H, Bernhard C, et al. Advanced Engineering Materials,2012,14(1-2),62.63 Wen Y H, Zhang W, Li N, et al. Acta Metallurgica Sinica,2006,42(11),217(in Chinese).文玉华,张伟,李宁,等.金属学报,2006,42(11),1217.64 Si N C, Jia Z H, Qi L B. Journal of the Chinese Rare Earth Society,2003,21(1),53(in Chinese).司乃潮,贾志宏,祁隆飙.中国稀土学报,2003,21(1),53.65 Li C L, Liang G Y, Jin Z H. Journal of Xi’an Jiaotong University,1998,32(2),53(in Chinese).李成劳,梁工英,金志浩.西安交通大学学报,1998,32(2),53.66 Maji B C, Krishnan M. Materials Science & Engineering A,2013,570(19),13.67 Li H, Dunne D. ISIJ International,1997,37(6),605.68 Chen J, Peng H B, Yang Q, et al. Materials Science and Engineering: A,2016,677,133.69 Ye B B, Peng H B, Xiong L R, et al. Transactions of Materials and Heat Treatment,2009,30(3),10(in Chinese).叶邦斌,彭华备,熊隆荣,等.材料热处理学报,2009,30(3),10.70 Li N, Wang S H, Yang J, et al. Rare Metal Materials and Engineering,2008,37(6),1099.李宁,王杉华,杨军,等.稀有金属材料与工程,2008,37(6),1099(in Chinese).71 Yang J, Deng L J, Lin Y H, et al. Journal of Functional Materials,2012,3(11),1389(in Chinese).杨军,邓龙江,林元华,等.功能材料,2012,3(11),1389.72 Wan J, Huang X, Chen S, et al. Materials Transactions,2002,43(5),920.73 Cheng X M, Hu S, Wu X W, et al. Hot Working Technology,2008,37(4),52(in Chinese).程晓敏,胡胜,吴兴文,等.热加工工艺,2008,37(4),52.74 Rovere C A D, Alano J H, Otubo J, et al. Journal of Alloys & Compounds,2011,509(17),5376.75 Rovere C A D, Alano J H, Silva R, et al. Corrosion Science,2012,57(2),154.76 Rovere C A D, Alano J H, Silva R, et al. Materials Chemistry & Physics,2012,133(2-3),668.77 Karaman I, Sehitoglu H, Chumlyakov Y I, et al. Scripta Materialia,2001,44(2),337.78 Ando K, Omori T, Ohnuma I, et al. Applied Physics Letters,2009,95(21),595.79 Omori T, Nagasako M, Okano M, et al. Applied Physics Letters,2012,101(23),1966.80 Tseng L W, Ma J, Wang S J, et al. Acta Materialia,2015,89,374.81 Omori T, Ando K, Okano M, et al. Science,2011,333(6038),68.82 Omori T, Iwaizako H, Kainuma R. Materials & Design,2016,101,263.83 Omori T, Okano M, Kainuma R. APL Materials,2013,1(3),1105.84 Tseng L W, Ma J, Vollmer M, et al. Scripta Materialia,2016,125,68.85 Vollmer M, Segel C, Krooß P, et al. Scripta Materialia,2015,108,23.86 Tseng L W, Ma J, Wang S J, et al. Acta Materialia,2015,89,374.87 Tseng L W, Ma J, Wang S J, et al. Scripta Materialia,2016,116,147.88 Ojha A, Sehitoglu H. International Journal of Plasticity,2016,86,93.89 Nascimento M, Neto J D R, De Lima A. ABCM Symposium Series in Mechatronics,2004,1,264.90 Zou Q, Huang H T, Wang M Z. Journal of Yanshan University,2016,40(1),1(in Chinese).邹芹,黄洪涛,王明智.燕山大学学报,2016,40(1),1.91 Dang S, Li Y G, Zou Q, et al. Journal of Materials Engineering,2019,47(5),18(in Chinese).党赏,李艳国,邹芹,等.材料工程,2019,47(5),18.
[1] 田亚强, 黎旺, 郑小平, 魏英立, 宋进英, 陈连生. 合金元素在淬火配分钢中的应用研究进展[J]. 材料导报, 2019, 33(7): 1109-1118.
[2] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[3] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[4] 陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
[5] 张永皞, 孟玉堂, 范啟超, 孙明艳, 黄姝珂. “近单相”型NiTiNb形状记忆合金研究进展[J]. 材料导报, 2019, 33(19): 3272-3276.
[6] 毛虎, 杨宏亮, 史晓斌. 纳米晶NiTi形状记忆合金的研究进展[J]. 材料导报, 2019, 33(13): 2237-2242.
[7] 王星星,彭 进,崔大田,薛 鹏,李 红,胡安明,孙国元. 银基钎料在制造业中的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1477-1485.
[8] 薛喜丽, 陈鑫, 李龙, 周德敬. Mn、Fe含量对3003铝合金铸锭均匀化行为的影响[J]. 材料导报, 2018, 32(22): 3913-3918.
[9] 袁勃, 曾磊, 钱明芳, 张学习, 耿林. 形状记忆合金弹热效应研究进展[J]. 材料导报, 2018, 32(17): 3033-3040.
[10] 邓莉萍, 鲁世强, 林彦. 合金元素Ni对NbCr2/Nb合金热稳定性的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2442-2447.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed