Please wait a minute...
材料导报  2019, Vol. 33 Issue (23): 3963-3970    https://doi.org/10.11896/cldb.18110069
  金属及金属基复合材料 |
利用微电极阵列技术研究合金的腐蚀
卜红梅1, 李肖蔚2, 齐建涛3, 李焰1
1 中国石油大学(华东)材料科学与工程学院,青岛 266580
2 中国石油工程建设有限公司北京设计分公司,北京 100000
3 中国石油大学(华东)化学工程学院,青岛 266580
Microelectrode Array Technology Used for Investigating the Corrosion of Alloys
BU Hongmei1, LI Xiaowei2, QI Jiantao3, LI Yan1
1 College of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580
2 China Petroleum Engineering Construction Corp., Beijing Company, Beijing 100000
3 College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580
下载:  全 文 ( PDF ) ( 2332KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着工业水平的不断发展与提高,合金材料的使用量亦不断增大。然而合金材料的腐蚀问题在工业生产及生态环境中造成了不可估量的损失。为此,国内外学者已经开展了大量关于合金腐蚀机理与防护方面的研究,并取得了一定的进展。
微电极阵列技术是一种介于宏观的经典电化学技术和微区扫描探针技术之间的新型电化学测试方法。它既能获取合金大面积电极的整体平均信息,又能探测合金局部微小区域内的电位、电流分布特征,能更加准确地测试合金局部腐蚀过程中非均一的电化学信息。随着国内外学者的不断研究与开发,现已实现微电极阵列的优化。该技术联合其他电化学测试技术和表面科学技术等方法,不断丰富了合金/腐蚀溶液界面的物理、化学及电化学信息。近几年,大量专家学者采用该微电极阵列技术与其他测试技术相结合的方法研究了常用合金在不同环境和腐蚀状态下的局部腐蚀过程及机理,并取得了重要的研究进展。其中,对异材质金属的电偶腐蚀行为及演变规律的研究取得了重大突破。此外,实时耦合的多电极阵列传感器(CMAS)探针的开发应用,对合金局部腐蚀的在线监/检测起到了举足轻重的作用。
本文主要综述了微电极阵列技术在研究合金的电偶腐蚀、表面涂层失效、腐蚀环境的影响方面的进展,探讨了微电极阵列技术在表征合金局部电化学不均一性方面的优势与不足,并对其进行了总结和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卜红梅
李肖蔚
齐建涛
李焰
关键词:  合金  微电极阵列  全面腐蚀  局部腐蚀  电偶腐蚀  电化学  涂层失效    
Abstract: With the booming development and improvement of the industries, the employment of alloy materials also increases. However, the corrosion problem of alloy materials has caused incalculable losses to industrial production and ecological environment. In order to reduce the da-mage and impact of various aspects caused by alloy corrosion, domestic and foreign scholars have carried out a large number of researches on alloy corrosion mechanism and protection, and some research progress has been made.
Microelectrode array technology is a new type of electrochemical test method between macroscopic classical electrochemical technology and micro-area scanning probe technology. It can not only obtain the overall average information of the large-area electrode of the alloy, but also detect the characteristics of potential and current distribution in the local micro-area of the alloy. Compared with the macroscopic classical electrochemical technology, it can more accurately test the heterogeneous electrochemical information in the local corrosion process of the alloy. The optimization of such microelectrode arrays has been realized with the continuous research and development of scholars at home and abroad. By the combination of other electrochemical testing techniques and surface science and technology methods, the physical, chemical and electrochemical information of the alloy/corrosion solution interface has been enriched. In recent years, a great deal of experts and scholars have used this microelectrode array technology combined with other testing techniques to study the local corrosion process and mechanism of common alloys under diffe-rent environments and corrosion conditions, and achieved important research progress. The research on the galvanic corrosion behavior and evolution law of different material metals has made a major breakthrough. In addition, the development and application of real-time coupled multi-electrode array sensor (CMAS) probes play an important role in online monitoring/detection of local corrosion of alloys.
In this paper, we reviewed the progress of microelectrode array technology in the study of galvanic corrosion, surface coating failure and the influence of corrosion environment on alloy. Then we summarized the merits and demerits of microelectrode array technology in characterizing the local electrochemical heterogeneity of the alloy and the future trend was prospected.
Key words:  alloy    microelectrode array    general corrosion    local corrosion    galvanic corrosion    electrochemistry    coating failure
               出版日期:  2019-12-10      发布日期:  2019-09-30
ZTFLH:  TG171  
基金资助: 中央高校基本科研业务费专项资金(18CX02128A);国家自然科学基金(青年基金)(51701239)
作者简介:  卜红梅,2017年6月毕业于中国石油大学(华东),获得工学学士学位。现为中国石油大学(华东)材料科学与工程学院硕士研究生,在李焰教授和齐建涛副教授的联合指导下进行研究。目前主要研究领域为镁合金表面功能性转化膜材料的多尺度表征及可控制备。
齐建涛,中国石油大学(华东)化学工程学院副教授,硕士研究生导师。山东省暨青岛市腐蚀与防护学会理事。2011年6月本科毕业于中国石油大学(华东)化学工程学院,2015年9月在英国曼彻斯特大学腐蚀与防护专业取得博士学位,2015—2018年分别在英国曼彻斯特大学(LATEST2项目,合作导师Prof. George Thompson院士)和法国国家科学研究中心(NEPAL FUI项目,合作导师Prof. Philippe Marcus)进行博士后研究工作。主要从事金属材料的表面改性、纳米材料光谱分析及耐蚀性能评估等方面的研究工作。近年来,在腐蚀与防护研究领域发表论文10余篇,包括Mater. Let.、Electrochem. Commun.、Electrochim. Acta、J. Electrochem. Soc.、Appl. Surf. Sci.、Thin Solid Films.和Surf. Coat. Technol等SCI学术期刊。
引用本文:    
卜红梅, 李肖蔚, 齐建涛, 李焰. 利用微电极阵列技术研究合金的腐蚀[J]. 材料导报, 2019, 33(23): 3963-3970.
BU Hongmei, LI Xiaowei, QI Jiantao, LI Yan. Microelectrode Array Technology Used for Investigating the Corrosion of Alloys. Materials Reports, 2019, 33(23): 3963-3970.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110069  或          http://www.mater-rep.com/CN/Y2019/V33/I23/3963
1 Baker H. ASM handbook: Alloy phase diagrams, ASM International, America,1992.2 Cao C N. Introduction to electrochemical impedance spectroscopy, Science Press, China,2002(in Chinese).曹楚南.电化学阻抗谱导论,科学出版社,2002.3 Gao Z M, Song S Z. Journal of Chinese Society for Corrosion and Protection,2008,28(4),193(in Chinese).高志明,宋诗哲.中国腐蚀与防护学报,2008,28(4),193.4 Wang L W, Li X G, Du C W, et al. Chinese Journal of Corrosion and Protection,2010,30(6),498(in Chinese).王力伟,李晓刚,杜翠薇,等.中国腐蚀与防护学报,2010,30(6),498.5 Fan W J, Zhao X D, Xing S H, et al. Hot Working Process,2015,44(22),15(in Chinese).樊伟杰,赵晓栋,邢少华,等.热加工工艺,2015,44(22),15.6 Huang G L, Xue M L, Zi Y Z. World Nonferrous Metals,2018(6),217(in Chinese).黄国亮,薛蔓凌,字映竹.世界有色金属,2018(6),217.7 Lin C J, Li Y, Lin B, et al. Electrochemistry,2009,15(2),121(in Chinese).林昌健,李彦,林斌,等.电化学,2009,15(2),121.8 Ji D W. Study on monitoring technology of pipeline inner wall corrosion. Ph.D. Thesis, Dalian University of Technology, China,2010(in Chinese).纪大伟.管道内壁腐蚀监测技术研究.博士学位论文,大连理工大学,2010.9 Zhang H Y. Study on internal corrosion law of sour gas gathering pipeline. Master’s Thesis, China University of Petroleum (East China), China,2013(in Chinese).张宏阳.含酸气集输管道的内腐蚀规律研究.硕士学位论文,中国石油大学(华东),2013.10 Fan L, Xing Q, Qiu R, et al. Corrosion Science and Protection Technology,2015,27(5),509(in Chinese).范林,邢青,邱日,等.腐蚀科学与防护技术,2015,27(5),509.11 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB150. Pressure vessels, first part: General requirements,2011(in Chinese).中华人民共和国国家质量监督检验检疫总局.GB150.压力容器,第1部分:通用要求,2011.12 Maurice V, Marcus P. Progress in Materials Science,2018,95,132.13 Yang R, Li Y. Corrosion Science and Protection Technology,2014,26(3),259(in Chinese).杨瑞,李焰.腐蚀科学与防护技术,2014,26(3),259.14 Zhong Q D. Chinese Journal of Corrosion and Protection,1999,19(3),189(in Chinese).钟庆东.中国腐蚀与防护学报,1999,19(3),189.15 Li G P. Effect of stress on intergranular corrosion of 2024 aluminum alloy. Master’s Thesis, Shenyang University, China,2018(in Chinese).李贵鹏.应力对2024铝合金晶间腐蚀的影响.硕士学位论文,沈阳大学,2018.16 Huang Z. Anticorrosion structure and material application of car body. Master’s Thesis, Wuhan University of Technology, China,2009(in Chinese).黄湛.轿车车身防腐结构及材料应用.硕士学位论文,武汉理工大学,2009.17 Xie F. Corrosion and Protection of Petrochemical Industry,2004,21(3),56(in Chinese).谢凤.石油化工腐蚀与防护,2004,21(3),56.18 Xie F. Corrosion and Protection of Petrochemical Industry,2004,21(4),1(in Chinese).谢凤.石油化工腐蚀与防护,2004,21(4),1.19 Qiang M S, Jiang J H, Song D, et al. Corrosion and Protection,2015,36(7),677(in Chinese).强明闪,江静华,宋丹,等.腐蚀与防护,2015,36(7),677.20 Yu H. Corrosion behavior of cast Mg-Li-Al-Ca alloy in NaCl solution. Master’s Thesis, Jilin University, China,2012(in Chinese).于泓.铸造态Mg-Li-Al-Ca合金在NaCl溶液中的腐蚀行为研究.硕士学位论文,吉林大学,2012.21 Yuan B. Study on corrosion of AZ31 magnesium alloy surface treated with 45 steel. Master’s Thesis, Xi’an University of Technology, China,2006(in Chinese).袁兵.表面处理AZ31镁合金与45钢连接腐蚀的研究.硕士学位论文,西安理工大学,2006.22 Krebs H M. The microstructure and corrosion performance of AZ31B-H24 magnesium alloy sheet. Ph.D. Thesis, The University of Manchester, United Kingdom,2017.23 Wu P P. Study on corrosion resistance of Mg-Al-Ca alloy. Master’s Thesis, Taiyuan University of Technology, China,2018(in Chinese).武鹏鹏.Mg-Al-Ca合金耐腐蚀性能研究.硕士学位论文,太原理工大学,2018.24 Zeng R, Dietzel W, Zettler R, et al. Transactions of Nonferrous Metals Society of China,2014,24(10),3060.25 Weng Y J, Zhao H Y. Chinese Journal of Corrosion and Protection,2003,23(6),7(in Chinese).翁永基,赵海燕.中国腐蚀与防护学报,2003,23(6),7.26 Tan Y J. Material Protection,1993,26(8),17(in Chinese).谭勇军.材料保护,1993,26(8),17.27 Lin C J, Zhuo X D, Chen J D, et al. Chinese Journal of Corrosion and Protection,1997,17(01),9(in Chinese).林昌健,卓向东,陈纪东,等.中国腐蚀与防护学报,1997,17(01),9.28 Zhong Q D, Shu Y D, Jiang H Y. Chinese Journal of Corrosion and Protection,1997,17(4),43(in Chinese).钟庆东,舒余德,蒋汉瀛.中国腐蚀与防护学报,1997,17(4),43.29 Eren H, M. Lowe A, Tan Y J, et al. IEEE Transactions on Instrumentation and Measurement,1998,47(5),1096.30 Wang W, Zhang X, Wang J. Electrochimica Acta,2009,54(23),5598.31 李焰,刘玉,张大磊.中国专利,ZL201220622726.5,2012.32 Ding L. Electrochemical behavior and mechanism of TA2/HAl77-2/316L SS corrosion zone in seawater desalination plant. Master’s Thesis, China University of Petroleum (East China), China,2016(in Chinese).丁莉.海水淡化装置中TA2/HAl77-2/316L SS腐蚀体系微区电化学行为和机理研究.硕士学位论文,中国石油大学(华东),2016.33 Zhang D L, Wang W, Li Y. Journal of Materials Research,2009,23(4),343(in Chinese).张大磊,王伟,李焰.材料研究学报,2009,23(4),343.34 Zhang D L, Wang W, Jin Y H, et al. Chinese Journal of Nonferrous Me-tals,2011,21(9),2168(in Chinese).张大磊,王伟,金有海,等.中国有色金属学报,2011,21(9),2168.35 Cao K L, Cheng C Q, Zhao J. Material Protection,2016,49(7),27(in Chinese).曹快乐,程从前,赵杰.材料保护,2016,49(7),27.36 Cao K L. Study on non-uniformity of galvanic corrosion of brass and stainless steel by tow electrode. Master’s Thesis, Dalian University of Technology, China,2016(in Chinese).曹快乐.丝束电极研究黄铜/不锈钢电偶腐蚀的非均匀性.硕士学位论文,大连理工大学,2016.37 Yang R. Corrosion electrochemical behavior of X80 pipeline steel in NACE solution. Master’s Thesis, China University of Petroleum (East China), China,2015(in Chinese).杨瑞.X80管线钢在NACE溶液中的腐蚀电化学行为研究.硕士学位论文,中国石油大学(华东),2015.38 Liu H J. Study on galvanic corrosion of marine steel under organic coating. Master’s Thesis, Ocean University of China, China,2011(in Chinese).刘华剑.有机涂层下船用钢电偶腐蚀规律研究.硕士学位论文,中国海洋大学,2011.39 Zhang G, Yu N, Yang L, et al. Corrosion Science,2014,86,202.40 Guo H, Cheng X D, Zhang H X, et al. Journal of Electroplating and Fi-nishing,2018,40(6),17(in Chinese).郭晗,程旭东,张慧霞,等.电镀与精饰,2018,40(6),17.41 Ju H, Duan J, Yang Y, et al. Materials,2018,11(4),634.42 Tan Y J. Progress in Organic Coatings,1991,19(1),89.43 Tan Y J, Shiti Y. Progress in Organic Coatings,1991,19(1),257.44 Kong D Y. Study on degradation process of organic coatings by combined tow electrode technique and electrochemical impedance spectroscopy. Master’s Thesis, Ocean University of China, China,2011(in Chinese).孔德艳.联合丝束电极技术和电化学阻抗技术研究有机涂层劣化过程.硕士学位论文,中国海洋大学,2011.45 Tan Y. Corrosion Science,1998,41(2),229.46 Tan Y, Bailey S, Kinsella B. Corrosion Science,2001,43(10),1931.47 Tan Y, Aung N N, Liu T. Corrosion Science,2012,63,379.48 Tan Y. Corrosion Science,2005,47(7),1653.49 Changjian L. Electrochemistry (Chinese),1996,2(2),144.50 Zhang W, Wang J, Li Y N, et al. Journal of Physical Chemistry,2010,26(11),2941(in Chinese).张伟,王佳,李玉楠,等.物理化学学报,2010,26(11),2941.51 Thu Q L, Bonnet G, Compere C, et al. Progress in Organic Coatings,2005,52(2),118.52 Liu Q B, Deng P C, Hu J Z, et al. Guangzhou Chemical Industry,2016,44(18),19(in Chinese).刘泉兵,邓培昌,胡杰珍,等.广州化工,2016,44(18),19.53 Liu J, Liu H F, Xu L M, et al. Corrosion and Protection,2001,22(8),325(in Chinese).刘靖,刘宏芳,许立铭,等.腐蚀与防护,2001,22(8),325.54 Wang W, Wang J. In:2012 Academic Annual Meeting-China Corrosion Electrochemistry and Test Methods Committee. Chengdu,2012,pp.4(in Chinese).王伟,王佳.中国腐蚀电化学及测试方法专业委员会2012学术年会.成都,2012,pp.4.55 Dong Z H, Shi W, Ruan H M, et al. Corrosion Science,2011,53(9),2978.56 Zhang X, Wang W, Wang J. Corrosion Science and Protection Technology,2009,21(3),242(in Chinese).张霞,王伟,王佳.腐蚀科学与防护技术,2009,21(3),242.57 Aung N N, Tan Y J. Corrosion Science,2004,46(12),3057.58 Dong Z H, Shi W, Guo X P. Journal of Physical Chemistry,2011,27(1),127(in Chinese).董泽华,石维,郭兴蓬.物理化学学报,2011,27(1),127.59 Yu N, Xu B H, Zhang G A, et al. In: The 17th National Corrosion Inhibitor Academic Discussion and Application Technology Experience Exchange Meeting.Chongqing,2012,pp.7(in Chinese).喻能,许炳辉,张国安,等.第十七届全国缓蚀剂学术讨论及应用技术经验交流会.重庆,2012,pp.7.60 Zeng L. Scouring corrosion mechanism and fluid dynamics of pipe elbow. Ph.D. Thesis, Huazhong University of Science and Technology, China,2017(in Chinese).曾莉.管道弯管段冲刷腐蚀机理与流体动力学特征.博士学位论文,华中科技大学,2017.61 Zhao W H, Cai G Y, Dong Z H. In:National Academic Conference on Corrosion Electrochemistry and Test Methods in 2016. Qingdao,2016,pp.2(in Chinese).赵苇杭,蔡光义,董泽华.2016年全国腐蚀电化学及测试方法学术交流会.青岛,2016,pp.2.62 Chen Y L, Zhang W, Wang W, et al. Chinese Journal of Corrosion and Protection,2014,34(5),451(in Chinese).陈亚林,张伟,王伟,等.中国腐蚀与防护学报,2014,34(5),451.63 Zhang X. Study on the mechanism of waterline corrosion using array electrodes. Master’s Thesis, Ocean University of China, China,2013(in Chinese).张雪.利用阵列电极研究水线腐蚀的机理.硕士学位论文,中国海洋大学,2013.64 Zhang J L, Hou B R, Guo G Y, et al. Ocean and Lake,1995,26(1),98(in Chinese).张经磊,侯保荣,郭公玉,等.海洋与湖沼,1995,26(1),98.65 Hu J Z, Li X G, Deng P C, et al. Corrosion Science and Protection Technology,2015,27(6),551(in Chinese).胡杰珍,李晓刚,邓培昌,等.腐蚀科学与防护技术,2015,27(6),551.66 Su J X, Liu B, Guo Y. Corrosion and Protection,2018,39(2),129(in Chinese).苏景新,刘波,郭英.腐蚀与防护,2018,39(2),129.67 Shi W, Dong Z H, Kong D J, et al. Cement and Concrete Research,2013,48,25.68 Kenneth Chiang K, Yang L. Recent Patents on Computer Science,2011,1(1),108.69 Yang L, Sridhar N. In: CORROSION 2006.2006,pp.06681.70 Chen J S, Yang D, Fu D Y, et al. Journal of Materials and Metallurgy,2008,7(3),233(in Chinese).陈建设,杨栋,付东宇,等.材料与冶金学报,2008,7(3),233.71 Yang L, Dunn D. In: CORROSION 2002. Colorado, 2002, pp.02004.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[3] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[4] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[5] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[6] 张金中, 李坚, 胡海兵, 关立伟. Yb∶MgAg纳米双层阴极的光电特性改善[J]. 材料导报, 2019, 33(z1): 297-299.
[7] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[8] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[9] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[10] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[11] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[12] 张哲轩, 周再峰, 山泉, 李祖来, 蒋业华, 张飞. 表面钨合金化对高铬铸铁组织和硬度的影响[J]. 材料导报, 2019, 33(z1): 362-365.
[13] 孙朋朋, 闵娜, 左鹏鹏, 吴晓春. 7Cr5Mo2V冷作模具钢回火特性研究[J]. 材料导报, 2019, 33(z1): 377-381.
[14] 刘谦, 王昕阳, 黄燕滨, 谢璐, 许诠, 黄俊雄. 高熵合金设计与计算机模拟方法的研究进展[J]. 材料导报, 2019, 33(z1): 392-397.
[15] 王怡心, 马勤, 贾建刚, 高昌琦, 张瑄瑄. Half-Heusler热电材料性能优化策略及研究进展[J]. 材料导报, 2019, 33(z1): 403-407.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed