Please wait a minute...
材料导报  2019, Vol. 33 Issue (23): 3971-3978    https://doi.org/10.11896/cldb.18120160
  金属及金属基复合材料 |
镍基高温合金微孪晶形成机制的研究进展
屈鹏飞, 杨文超, 岳全召, 曹凯莉, 刘林
西北工业大学凝固技术国家重点实验室,西安 710072
The Research and Development of Micro-Twinning Formation Mechanism inNickel-based Superalloys
QU Pengfei, YANG Wenchao, YUE Quanzhao, CAO Kaili, LIU Lin
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
下载:  全 文 ( PDF ) ( 2974KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镍基高温合金具有优良的成分兼容性、良好的组织稳定性、抗氧化和抗腐蚀性能,被广泛用于航空发动机和地面燃气轮机的涡轮叶片等关键的热端部件。沉淀相γ′对位错运动的阻碍是镍基高温合金的主要强化作用之一。一般而言,这种阻碍作用不仅与γ′相的形貌、体积分数及尺寸有关,也取决于γ′相与位错的交互作用。通常这种交互作用机制可分为三种:切割机制、Orowan绕过机制和热激活攀移机制。当不同类型的位错切割γ′相时,在γ′相中会形成不同的高能缺陷,能够阻碍位错运动,延缓材料软化。这类结构或成分缺陷包括:反相畴界(APB)、复杂层错(CSF)、超点阵内禀层错(SISF)、超点阵外禀层错(SESF)和微孪晶。
微孪晶化(Micro-twinning)是镍基高温合金中一种重要的变形机制,主要发生在中温高应力条件下。此外,中温拉伸变形过程中也有微孪晶产生。早期研究表明,微孪晶的产生与SESF有关,可以认为SESF是“胚体孪晶”,且SESF是由a/3〈112〉超点阵不全位错切入γ′相产生的。基于溶质原子短程扩散的原子重排(Reordering)机制被用来解释微孪晶的形成,即a/6〈112〉不全位错切入γ′相中先产生CSF,而后CSF通过原子重排转变为SESF,最终形成微孪晶。最近的研究表明,在微孪晶产生过程中,Co和Cr原子会在成分偏析和柯氏气团的作用下发生长程扩散,因此有学者指出微孪晶的形成是原子重排短程扩散机制和偏析主导的长程扩散共同作用的结果。同时,对于高温合金微孪晶机制的研究,研究人员不再局限于其形成机制,而对微孪晶的长大机制有了进一步的理解。
共格的纳米孪晶界作为金属材料中的一种特殊缺陷,可以有效阻碍位错运动,从而强化材料,这种强化方式已经在纳米铜、TWIP钢以及TiAl合金中得到应用。研究人员发现,孪晶能够强化固溶强化的镍合金;同时,有学者发现镍基高温合金中退火孪晶界对位错运动有明显的阻碍作用。因此,微孪晶化有望成为一种强化镍基高温合金的方法。
本文归纳了镍基高温合金中微孪晶形成机制的发展和演变,分析了不全位错、内禀层错、外禀层错、复杂层错、元素偏析以及柯氏气团(Cottrell atmospheres)在微孪晶化中所起的作用,同时也阐述了孪晶界面处元素偏析在孪晶长大中的作用。此外,本文还综述了微孪晶在镍基高温合金强化中的作用,指出了通过微孪晶强化高温合金过程中存在的问题,展望了微孪晶在高温合金强化中的应用,为研究高温合金的中温变形机制和孪晶强化机制提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
屈鹏飞
杨文超
岳全召
曹凯莉
刘林
关键词:  镍基高温合金  变形机制  微孪晶  元素偏析  孪晶强化    
Abstract: Ni-based single crystal superalloys have long been the candidate materials for applications in the critical components of the gas turbine engines due to their superior composition compatibility, microstructural stability, and creep, fatigue, oxidation, corrosion resistances. The inhibition of dislocation motion by γ′ precipitates is one of the main strengthening effects of nickel-based superalloys. In general, this hindrance is related not only to the morphology, volume fraction and size of γ′ precipitates, but also to the interaction of γ′ precipitates and dislocation. Usually this inte-raction mechanism can be divided into three types: shearing mechanism, Orowan looping mechanism and thermal activation climbing mechanism. When different types of dislocations cut the γ′ phase, different high-energy defects are formed in the γ′ phase, which can hinder creep and fatigue. Examples of these structural and chemical defects include antiphase boundaries (APB), complex stacking faults (CSF), superlattice intrinsic stacking faults (SISF), superlattice extrinsic stacking faults (SESF) and micro-twins.
Micro-twinning is an important deformation mechanism in nickel-based superalloys. It mainly occurs under medium-temperature and high-stress conditions. In addition, during the mid-temperature tensile deformation, micro twinning occurs. Early studies have shown that the appearance of micro-twins is related to the superlattice extrinsic stacking faults (SESF), which is produced by a/3〈112〉 superlattice partial dislocations and can be considered as “embryonic twin”. Subsequently, the reordering mechanism based on the short-range diffusion of solute atoms is used to explain the formation of micro-twins. Firstly, the a/6〈112〉 partial dislocation cut into the γ′ phase to produce complex stacking faults (CSF), and then the complex stacking faults are transformed to SESF by atomic rearrangement. Finally, micro-twins are eventually formed. Recent studies have shown that in the process of micro-twinning, the long-range diffusion of critical elements such as Cr and Co could occur under the collective effect of composition segregation and Cottrell atmospheres. Therefore, some scholars have pointed out that the formation of micro-twins require the long-range diffusion of critical elements, along with the short-range reordering. Moreover, some researchers are not limited to the study of forming mechanism of the micro-twin mechanism of superalloys, but have further understanding of the growth mechanism of micro-twin.
The coherent nano-twin boundaries, as a special defect in the metal material, can effectively hinder the dislocation motion and strengthen the material. And this strengthening method has been applied in nano-copper, TWIP steel and TiAl alloy. The researchers found that twins can strengthen solid solution-strengthened nickel alloys. At the same time, some scholars have given a clear TEM image, clearly indicating that the micro-twins hinder the movement of dislocations, and pointed out that the introduction of micro twins can be used as a new way to design and strengthen superalloys. Therefore, micro-twinning is expected to be a method of strengthening nickel-based superalloys.
In this paper, the development and evolution of micro-twin deformation mechanism are summarized, and the roles of partial dislocations, superlattice intrinsic stacking fault (SISF), superlattice extrinsic stacking faults (SESF), complex stacking faults (CSF), elemental segregation and Cottrell atmospheres are analyzed in micro-twinning, then also the role of the segregation at twin interface in twin growth is explained. Moreover, the role of twins in alloy strengthening is reviewed, and the problems existing in the strengthening of superalloys by micro-twinning are pointed out. Finally, the application of micro twins in reinforcing superalloys is prospected, and a reference is provided for the study of the deformation mechanism at medium-temperature and the twinned reinforced mechanism.
Key words:  nickel-based superalloy    deformation mechanism    micro-twins    element segregation    twin strengthening
               出版日期:  2019-12-10      发布日期:  2019-09-30
ZTFLH:  TG115.5  
基金资助: 国家自然科学基金(51771148;51631008;51690163); 陕西省自然科学基础研究计划(2019JM-319);中央高校基本科研基金(3102018JCC009;3102019PB001)
作者简介:  屈鹏飞, 2016年6月毕业于中南大学,获得工学学士学位。现为西北工业大学凝固技术国家重点实验室的博士研究生,在杨文超副教授的指导下进行研究。目前主要研究领域为镍基单晶高温合金蠕变行为与机制。
杨文超,西北工业大学材料学院副教授,博士研究生导师,中国金属学会电磁冶金分会委员,中国金属学会会员,中国航空学会会员。主要从事航空航天用镍基单晶高温合金凝固特性、单晶取向和缺陷控制、组织优化、热处理工艺开发、蠕变机理以及性能优化等方面的研究工作。入选2017—2019年年度第三届“中国科协青年人才托举工程”,获2017年陕西省科学技术发明一等奖和2015年F5000中国精品学术期刊顶尖论文奖,主持2项国家自然科学基金、1项中国科协青年人才托举项目、1项陕西省自然科学基金、1项工信部”强基工程”项目,5项企业研究横向课题,推动了我国高温合金国产化研究及市场化进程。授权国家发明专利6项,发表SCI论文50余篇,受邀做国际会议分会场报告10次。
引用本文:    
屈鹏飞, 杨文超, 岳全召, 曹凯莉, 刘林. 镍基高温合金微孪晶形成机制的研究进展[J]. 材料导报, 2019, 33(23): 3971-3978.
QU Pengfei, YANG Wenchao, YUE Quanzhao, CAO Kaili, LIU Lin. The Research and Development of Micro-Twinning Formation Mechanism inNickel-based Superalloys. Materials Reports, 2019, 33(23): 3971-3978.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120160  或          http://www.mater-rep.com/CN/Y2019/V33/I23/3971
1 Reed R C. The superalloys fundamentals and applications,Cambridge University Press,Cambridge,2006.2 Kelly A, Nicholson R. Strengthening methods in crystals, Elsevier Publishing Company LTD, Amsterdam/London/New York,1971.3 Smith T M, Unocic R R, Deutchman H, et al. Materials at High Tem-peratures,2016,33(4-5),372.4 Unocic R R, Viswanathan G B, Sarosi P M, et al. Materials Science and Engineering A,2008,483-484,25.5 Yue Q, Liu L, Yang W, et al. Journal of Materials Science & Technology,2019,35,752.6 Yue Q, Liu L, Yang W, et al. Materials Science and Engineering A,2019,742,132.7 Viswanathan G B, Karthikeyan S, Sarosi P M, et al. Philosophical Magazine,2006,86(29-31),4823.8 Knowles D M, Chen Q Z. Materials Science and Engineering A,2003,340,88.9 Le Graverend J, Pettinari-Sturmel F, Cormier J, et al. Materials Science and Engineering A,2018,722,76.10 Barba D, Alabort E, Pedrazzini S, et al. Acta Materialia,2017,135,314.11 Knowles D M, Gunturi S. Materials Science and Engineering A,2002,328,223.12 Xu L, Chu Z K, Cui C Y, et al. Acta Metallurgica Sinica,2013,49(7),863(in Chinese).徐玲,储昭贶,崔传勇,等.金属学报,2013,49(7),863.13 Yuan Y, Gu Y F, Osada T, et al. Scripta Materialia,2012,67(2),137.14 Xu J, Huang Z, Jiang L. Journal of Alloys and Compounds,2018,749,1106.15 Freund L P, Messé O M D M, Barnard J S, et al. Acta Materialia,2017,123,295.16 Kear B H, Oblak J M, Giamei A F. Metallurgical Transactions,1970,1(9),2477.17 Kear B H, Oblak J M. Journal de Physique Colloques,1974,12,35.18 Guimier A, Strudel J L. In:Proceedings of the 2nd International Confe-rence on Strength of Metals and Alloys.ASM Metals Park, OH,1970,pp.1145.19 Ardakani M G, Mclean M, Shollock B A. Acta Materialia,1999,47(9),2593.20 Kolbe M. Materials Science and Engineering A,2001,319-321,383.21 Unocic R R. On the creep deformation mechanisms of an advanced disk Ni-base superalloy. Ph.D. Thesis. The Ohio State University, USA,2008.22 Christian J W, Mahajan S. Progress in Materials Science,1995,39(1-2),1.23 Viswanathan G B, Sarosi P M, Henry M F, et al. Acta Materialia,2005,53(10),3041.24 Sarosi P M, Viswanathan G B, Mills M J. Scripta Materialia,2006,55(8),727.25 Unocic R R, Zhou N, Kovarik L, et al. Acta Materialia,2011,59(19),7325.26 Viswanathan G B, Shi R, Genc A, et al. Scripta Materialia,2015,94,5.27 Smith T M, Esser B D, Antolin N, et al. Acta Materialia,2015,100,19.28 Barba D, Smith T M, Miao J, et al. Metallurgical and Materials Transactions A,2018,49,4173.29 Barba D, Pedrazzini S, Vilalta-Clemente A, et al. Scripta Materialia,2017,127,37.30 Atkinson C. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences,1981,378(1774),351.31 Smith T M, Rao Y, Wang Y, et al. Acta Materialia,2017,141,261.32 Smith T M, Esser B D, Good B, et al. Metallurgical and Materials Tran-sactions A,2018,49,4186.33 Smith T M, Esser B D, Antolin N, et al. Nature Communications,2016,7,13434.34 Lu L, Lu K. Acta Metallurgica Sinica,2010,46(11),1422(in Chinese).卢磊,卢柯.金属学报,2010,46(11),1422.35 Lu L, You Z S. Acta Metallurgica Sinica,2014,50(2),129(in Chinese).卢磊,尤泽升.金属学报,2014,50(2),129.36 Lu K, Lu L, Suresh S. Science,2009,324(17),349.37 Shaw L L, Villegas J, Huang J, et al. Materials Science and Engineering A,2008,480(1-2),75.38 Choi W S, Sandlöbes S, Malyar N V, et al. Scripta Materialia,2018,156,27.39 Lu L, Chen X, Huang X, et al. Science,2009,323(30),607.40 Chen G, Peng Y, Zheng G, et al. Nature Materials,2016,15(8),876.41 Kim I S, Choi B G, Hong H U, et al. Materials Science and Engineering A,2011,528(24),7149.42 Zhang P, Yuan Y, Shen S C, et al. Journal of Alloys and Compounds,2017,694,502.43 Liu Y F, Zhao Y S, Liu C G, et al. Materials Science and Technology,2018,34(10),1188.44 Wang G L, Liu J L, Liu J D, et al. Materials & Design,2017,130,131.45 Wang X G, Liu J L, Jin T, et al. Materials Science & Engineering A,2014,598,154.46 Qi D, Fu B, Du K, et al. Scripta Materialia,2016,125,24.47 Sajjadi S A, Nateghb S, Isac M, et al. Journal of Materials Processing Technology,2004,155-156,1900.48 Cui C Y, Gu Y F, Yuan Y, et al. Materials Science and Engineering A,2011,528(16-17),5465.49 Tian C, Han G, Cui C, et al. Materials & Design,2014,64,316.50 Tian C, Han G, Cui C, et al. Materials & Design,2015,88,123.51 Yuan Y, Gu Y, Cui C, et al. Advanced Engineering Materials,2011,13(4),296.52 Liu Y, Wang L, Huo J P, et al. Rare Metal Materials and Engineering,2008(9),1534(in Chinese). 刘杨,王磊,霍健萍,等.稀有金属材料与工程,2008(9),1534.53 Wang L, Liu Y, Song X, et al. Heat Treatment of Metals,2016,41(1),12(in Chinese).王磊,刘杨,宋秀,等.金属热处理,2016,41(1),12.54 Liu Y, Wang L, Qiao X Y, et al. Rare Metal Materials and Engineering,2008(1),66(in Chinese).刘杨,王磊,乔雪璎,等.稀有金属材料与工程,2008(1),66.55 Yang L, Lei W, Shuai W, et al. Transactions of Nonferrous Metals Society of China,2006(S3),1953.56 Simonetti M, Caron P. Materials Science and Engineering A,1998,254,1.
[1] 肖罡,卜晓兵,杨钦文,杨旭静,冯江华. 高锰Hadfield钢单向拉伸变形及断裂行为研究[J]. 材料导报, 2019, 33(22): 3811-3814.
[2] 王晓娟, 刘林, 赵新宝, 黄太文, 杨文超, 张军, 傅恒志. 添加碳和硼改善第三代镍基定向凝固高温合金的显微组织和偏析行为[J]. 材料导报, 2019, 33(20): 3452-3459.
[3] 徐子法, 焦俊科, 张正, 杨亚鹏, 张文武. 镍基高温合金激光修复工艺研究[J]. 材料导报, 2019, 33(19): 3196-3202.
[4] 刘春泉,彭其春,薛正良,吴腾. Fe-Mn-Al-C系列低密度高强钢的研究现状[J]. 材料导报, 2019, 33(15): 2572-2581.
[5] 唐昌平, 左国良, 刘文辉, 朱美韵, 李志云, 李权, 刘筱, 卢立伟. 挤压-T5态Mg-8Gd-4Y-Nd-Zr合金的动态冲击行为[J]. 《材料导报》期刊社, 2018, 32(14): 2437-2441.
[6] 杜伟, 石倩, 代明江, 易健宏, 林松盛, 侯惠君. 电弧离子镀NiCrAlY和NiCoCrAlYHfSi涂层抗高温氧化性能[J]. 《材料导报》期刊社, 2018, 32(13): 2267-2271.
[7] 丁青青,余倩,李吉学,张泽. 铼在镍基高温合金中作用机理的研究现状[J]. 《材料导报》期刊社, 2018, 32(1): 110-115.
[8] 曹秀中, 赵冰, 韩秀全, 侯红亮, 曲海涛. 连续SiC纤维增强钛基复合材料横向高温变形机理研究*[J]. 《材料导报》期刊社, 2017, 31(8): 88-93.
[9] 魏力民, 杨权, 程义, 谭舒平. Ni-25Cr-20Co合金时效组织结构及性能研究[J]. 《材料导报》期刊社, 2017, 31(16): 107-111.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed