Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (11): 1863-1869    https://doi.org/10.11896/j.issn.1005-023X.2018.11.013
  材料综述 |
600 ℃高温钛合金发展现状与展望
刘莹莹,陈子勇,金头男,柴丽华
北京工业大学材料科学与工程学院,北京 100124
Present Situation and Prospect of 600 ℃ High-temperature Titanium Alloys
LIU Yingying, CHEN Ziyong, JIN Tounan, CHAI Lihua
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
下载:  全 文 ( PDF ) ( 1193KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钛及钛合金具有比强度高、耐腐蚀性能和低温性能好、热强度高等优点,是航空航天工业中重要的结构材料。同时,相比于铝、镁轻合金,钛合金高温性能优异,因而在航空发动机耐高温部件中也有着相当大的应用潜力。1954年,美国研发出了第一种实用型高温钛合金Ti-6Al-4V,高温长时使用温度为300~350 ℃,综合性能良好,在之后的很长一段时间内被广泛使用。随着航空航天工业的不断发展,尤其是航空发动机的发展,其他各国也都相继研发出了一些使用温度更高的高温钛合金,直至1984年,英国开发出了世界上第一个使用温度达600 ℃的高温钛合金IMI834。IMI834的典型特点是在原有的近α型高温钛合金Ti-Al-Sn-Zr-Mo-Si体系中加入了0.06% C,扩大了两相区的加工窗口,优化了组织。在此之后,美国于1988年在原有高温钛合金Ti-6542S的基础上通过调整一些合金元素的含量也获得了一种实用温度为600 ℃的高温钛合金Ti1100。1992年,俄罗斯在BT18Y的基础上用5%的高熔点W代替1%Nb也开发出了一种达600 ℃的高温钛合金BT36。而国内高温钛合金起步相对较晚,前期以仿制为主,后逐渐形成了以添加稀土元素为特色的高温钛合金体系,典型的有中科院金属研究所和宝钛集团研发的Ti60和西北有色金属研究院自主研发的Ti600,它们的实际使用温度均为600 ℃,综合性能优异。总体来说,目前高温钛合金的使用温度很难突破600 ℃,主要是由于使用温度高于600 ℃时合金的热强性与热稳定性难以匹配协调,并且合金的抗氧化性急剧下降,表面氧化严重,导致合金热稳定性以及疲劳性能下降,甚至可能使航空发动机高压压气机部位的零部件存在“钛火”的风险。
    本文综述了国内外600 ℃及600 ℃以上的高温钛合金的发展现状。重点介绍了美国的Ti1100、英国的IMI834、俄罗斯的BT36、中国的Ti60、TG6和Ti600(600 ℃高温钛合金)以及中国的Ti65和Ti750(600 ℃以上高温钛合金)。总结了各国发展高温钛合金的思路,指出了限制高温钛合金向更高使用温度发展的瓶颈并提出了可能的解决途径。从控制α2相大小、形态、含量以及改善热加工工艺的角度对未来高温钛合金的发展进行了展望,以期为进一步提高高温钛合金的使用温度、优化高温钛合金性能提供指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘莹莹
陈子勇
金头男
柴丽华
关键词:  高温钛合金  发展现状  热强性  热稳定性  加工工艺    
Abstract: Titanium and titanium alloys which hold the advantages of high specific strength, favorable corrosion resistance and low-temperature performance, high thermal strength, etc., have become a kind of critical structural materials in aerospace industry, and moreover, have displayed considerable application potential for aeroengine heat-enduring parts owing to superior high-temperature performance compared with aluminum alloys and magnesium alloys. In 1954, the United States developed the first practical high-temperature titanium alloy Ti-6Al-4V which possesses a long-term use temperature range of 300—350 ℃ and a pleasurable comprehensive performance, and acquired extensive and long-lasting application. With the continuous progress of the aerospace industry, especially the advent of aeroengines, other countries successively developed some higher-working-temperature titanium alloys, among which IMI834, as the world’s first 600 ℃ high temperature titanium alloy, was created in 1984 by the United Kingdom. The typical feature of IMI834 is the addition of 0.06% C into the existing Ti-Al-Sn-Zr-Mo-Si titanium alloy system, expanding the processing window and optimizing the microstructure. After that, the United States obtained a high temperature titanium alloy Ti1100 in 1988, by adjusting the amount of some alloying elements in the original high-temperature titanium alloy Ti-6542S. In 1992, Russia also established its high temperature titanium alloy BT36 by substituting 5% W (a high-melting-point element) for 1% Nb within BT18Y. China’s research of high-temperature titanium alloy started relatively late, initially imitated foreign alloys, and later specia-lized in utilizing rare earth elements to design high-temperature titanium alloys. The Ti60 and Ti600 alloys, developed by IMR (CAS)/BaoTi Group and NIN respectively, both have the working temperature of 600 ℃ and favorable comprehensive performance. In general, the upper temperature limit of high-temperature titanium is difficult to exceed 600 ℃ at present. Sufficient studies have proved that the nearly ineliminable mismatch between thermal strength and thermal stability and the steep-oxidation-resistance-decay-induced severe surface oxidation at above 600 ℃ will result in the deterioration of thermal stability and fatigue properties, and even, the risk of “titanium fire” for those components serving in the high-pressure compressor section of an aeroengine.
    This review is concerned with the worldwide development status of 600 ℃ and above high-temperature titanium alloys. We give introductions for the 600 ℃ high-temperature titanium alloys including Ti1100 (US), IMI834 (UK), BT36 (Russia), and Ti60/TG6/Ti600 (China), as well as the 600 ℃-above ones including Ti65/Ti750 (China). The major nations’ design schemes of high-temperature titanium alloys and the obstacles to raising the upper temperature limit are outlined, and some possible solutions are put forward. The paper ends with a prospective discussion over the future trends of high-temperature titanium alloys, from the perspectives of controlling the size, morphology and content of α2 phase and adjusting the hot working process.
Key words:  high-temperature titanium alloy    development status quo    hot strength    thermal stability    processing technology
               出版日期:  2018-06-10      发布日期:  2018-07-20
ZTFLH:  TG146.2+  
作者简介:  刘莹莹:男,1993年生,硕士研究生,主要从事高温钛合金研究 E-mail:S201609042@emails.bjut.edu.cn 陈子勇:通信作者,男,博士,教授,主要从事轻质耐高温难变形特种结构材料研究 E-mail:czy@bjut.edu.cn
引用本文:    
刘莹莹, 陈子勇, 金头男, 柴丽华. 600 ℃高温钛合金发展现状与展望[J]. 《材料导报》期刊社, 2018, 32(11): 1863-1869.
LIU Yingying, CHEN Ziyong, JIN Tounan, CHAI Lihua. Present Situation and Prospect of 600 ℃ High-temperature Titanium Alloys. Materials Reports, 2018, 32(11): 1863-1869.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.11.013  或          http://www.mater-rep.com/CN/Y2018/V32/I11/1863
1 李淼泉,罗皎,等.钛合金精密锻造[M].北京:科学出版社,2016.
2 许国栋,王桂生,莫畏.钛材生产、加工与应用500问[M].北京:化学工业出版社,2011.
3 Zhu Zhishou. Recent research and development of titanium alloys for aviation application in China[J].Journal of Aeronautical Materials,2014,34(4):44(in Chinese).
朱知寿.我国航空用钛合金技术研究现状及发展[J].航空材料学报,2014,34(4):44.
4 何丹琪,石颢.钛合金在航空航天领域中的应用探讨[J].中国高新技术企业,2016(27):50.
5 Winstone M R, Partridge A, Brooks J W. The contribution of advanced high-temperature materials to future aero-engines[J].Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design & Applications,2001,215(2):63.
6 Cai Jianming, Cao Chunxiao. Alloy design and application expectation of a new generation 600 ℃ high temperature titanium alloy[J].Journal of Aeronautical Materials,2014,34(4):27(in Chinese).
蔡建明,曹春晓.新一代600 ℃高温钛合金材料的合金设计及应用展望[J].航空材料学报,2014,34(4):27.
7 李成功,傅恒志,于翘.航空航天材料[M].北京:国防工业出版社,2002.
8 Huo Dongxing, Liang Jinglong, Li Hui, et al. Progress of research and application of titanium alloy[J].Foundry Technology,2016(10):2065(in Chinese).
霍东兴,梁精龙,李慧,等.钛合金研究及应用进展[J].铸造技术,2016(10):2065.
9 He Chunyan, Zhang Lijun. The development and application of high temperature titanium alloy at domestic and abroad[J].World Nonferrous Metals,2016(1):21(in Chinese).
何春艳,张利军.国内外高温钛合金的发展与应用[J].世界有色金属,2016(1):21.
10 Leyens C, Peters M. Titanium and titanium alloys[M]∥Titanium and Titanium Alloys-Fundamentals and Applications.DLR,2003:1.
11 Hui Songxiao, Zhang Zhu, Xiao Jinsheng,et al. Progress of research on thermal stability of high-temperature titanium alloys—Ⅰ.Metallurgical stability[J].Chinese Journal of Rare Metals,1999(2):125(in Chinese).
惠松骁,张翥,萧今声,等.高温钛合金热稳定性研究进展—Ⅰ.组织稳定性[J].稀有金属,1999(2):125.
12 Lütjering G. Influence of processing on microstructure and mechanical properties of ( α+β ) titanium alloys[J].Materials Science & Engineering A,1998,243(1-2):32.
13 Evans W J. Optimising mechanical properties in alpha+beta titanium alloys[J].Materials Science & Engineering A,1998,243(1):89.
14 Zou Wuzhuang. Application and prospect of titanium and titanium alloy in aerospace industry[J].China Nonferrous Metals,2016(1):70(in Chinese).
邹武装.钛及钛合金在航天工业的应用及展望[J].中国有色金属,2016(1):70.
15 Weiss I, Semiatin S L. Thermomechanical processing of beta tita-nium alloys—An overview[J].Materials Science & Engineering A,1998,243(1-2):46.
16 Doorbar P, Dixon M, Chatterjee A. Aero-engine titanium from alloys to composites[C]∥Materials Science Forum.QLD,Australia,2009:127.
17 Krishna V G, Prasad Y V R K, Birla N C, et al. Processing map for the hot working of near-α titanium alloy 685[J].Journal of Materials Processing Technology,1997,71(3):377.
18 Tuo Xiangming, Li Nan. Effect of yttrium on microstructure and properties of high temperature alloys[J].Chinese Journal of Rare Metals,1999(2):70.
19 魏寿庸,贾栓孝,王鼎春,等.550 ℃高温钛合金的性能[J].钛工业进展,2000(2):25.
20 Zeng Liying, Zhao Yongqing, Hong Quan,et al. Research and deve-lopment of high temperature titanium alloys at 600 ℃[J].Tianium Industry Progress,2012,29(5):1(in Chinese).
曾立英,赵永庆,洪权,等.600 ℃高温钛合金的研发[J].钛工业进展,2012,29(5):1.
21 Singh N, Singh V. Effect of temperature on tensile properties of near-α alloy Timetal 834[J].Materials Science & Engineering A,2008,485(1):130.
22 Boyer R R. An overview on the use of titanium in the aerospace industry[J].Materials Science & Engineering A,1996,213(1-2):103.
23 Rosenberger A H, Madsen A, Ghonem H. Aging effects on the creep behavior of the near-alpha titanium alloy Ti-1100[J].Journal of Materials Engineering and Performance,1995,4(2):182.
24 Cai Jianming, Hao Mengyi, Li Xueming,et al. Study on composition character and microstructure of bt36 high temperature Ti alloy[J].Journal of Materials Engineering,2000(2):10(in Chinese).
蔡建明,郝孟一,李学明,等.BT36高温钛合金的成分特点及组织研究[J].材料工程,2000(2):10.
25 Cai Jianming, Li Zhenxi, Ma Jimin,et al. Research and development of 600 ℃ high temperature titanium alloys for aeroengine[J].Mate-rials Review,2005,19(1):50(in Chinese).
蔡建明,李臻熙,马济民,等.航空发动机用600 ℃高温钛合金的研究与发展[J].材料导报,2005,19(1):50.
26 Xiao Jinsheng, Xu Guodong. Several ways to improve mechanical properties of high temperature Ti based alloys[J].Transactions of Nonferrous Metals Society of China,1997(4):97(in Chinese).
萧今声,许国栋.提高高温钛合金性能的途径[J].中国有色金属学报,1997(4):97.
27 赵永庆,陈永楠,张学敏.钛合金相变及热处理[M].长沙:中南大学出版社,2012.
28 Li G P, Liu Y Y, Li D, et al. Direct observation of the nucleation of rare-earth-rich phase particles in rapidly solidified Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd alloy[J].Journal of Materials Science Letters,1996,15(11):1003.
29 胡清熊,刘振球,魏寿庸,等.世纪之交的中国钛加工业——宝鸡有色金属加工厂钛加工的发展[C]∥面向21世纪的科技进步与社会经济发展.杭州,1999:344.
30 黄旭.先进航空钛合金材料与应用[M].北京:国防工业出版社,2012.
31 Zhang Shangzhou, Wang Qingjiang, Li Geping, et al. Coorrelation between heat-treatment windows and mechanical properties of high-temperature tianium alloys Ti-60[J].Acta Metallurgica Sinica,2002,38(z1):70(in Chinese).
张尚洲,王青江,李阁平,等.高温钛合金Ti-60热处理窗口与性能的关系[J].金属学报,2002,38(z1):70.
32 Tang Haifang. Study on microstucture and high temperature properties of Ti600 alloy[D].Shenyang:Dongbei University,2010(in Chinese).
汤海芳.Ti600合金组织和高温性能的研究[D].沈阳:东北大学,2010.
33 Wang Qingjiang, Liu Jianrong, Yang Rui. High temperature tita-nium alloys: Status and perspective[J].Journal of Aeronautical Materials,2014,34(4):1(in Chinese).
王清江,刘建荣,杨锐.高温钛合金的现状与前景[J].航空材料学报,2014,34(4):1.
34 Duan Rui, Cai Jianming, Li Zhenxi. Effect of primary α phase vo-lume fraction on tensile property and thermal stability of near-alpha TG6 titanium alloy[J].Journal of Aeronautical Materials,2007,27(3):17(in Chinese).
段锐,蔡建明,李臻熙.初生α相含量对近α钛合金TG6拉伸性能和热稳定性的影响[J].航空材料学报,2007,27(3):17.
35 Duan Rui, Zhanghua, Cai Jianming,et al. Effect of microstructure on creep deformation behavior of near-alpha titanium alloy TG6[J].The China Journal of Nonferrous Metals,2010,20(b10):11(in Chinese).
段锐,张华,蔡建明,等.显微组织对近α型TG6钛合金高温蠕变变形行为的影响[J].中国有色金属学报,2010,20(b10):11.
36 Wang Tao, Guo Hongzhen, Zhao Zhanglong,et al. Microstructure evolution and properties of TG6 alloy under the isothermal deformation condition[J].Rare Metal Materials and Engineering,2010,39(10):160(in Chinese).
王涛,郭鸿镇,赵张龙,等.TG6合金等温变形条件下组织演变与性能的研究[J].稀有金属材料与工程,2010,39(10):160.
37 Wang Tao, Guo Hongzhen, Zhang Yongqiang, et al. Effects of hot forging temperature on microstructure and mechanical property of TG6 high temperature titanium alloy[J].Acta Metallurgica Sinica,2010(8):913(in Chinese).
王涛,郭鸿镇,张永强,等.热锻温度对TG6高温钛合金显微组织和力学性能的影响[J].金属学报,2010(8):913.
38 Dai S J, Zhu Y T, Chen F. Present status and processing methods of novel β titanium alloys for biomedical applications[J].Journal of Chongqing University of Technology(Natural Science),2016,30(4):27(in Chinese).
戴世娟,朱运田,陈锋.新型医用β钛合金研究的发展现状及加工方法[J].重庆理工大学学报(自然科学),2016,30(4):27.
39 Liu Jingyuan. Superplastic formability and microstructure evolution of Ti750 high temperature titanium alloy[D].Harbin:Harbin Institute of Technology,2011(in Chinese).
刘泾源.Ti750高温钛合金超塑成形性能及组织演变研究[D].哈尔滨:哈尔滨工业大学,2011.
40 Zhao Yongqing. Research status of titanium alloys at domestic and abroad[J].China Metal Bulletin,2008(50):40(in Chinese).
赵永庆.国内外钛合金研究现状[J].中国金属通报,2008(50):40.
41 Xu Guodong, Wang Feng’e. Development and application on high-temperature Ti-based alloys[J].China Joural of Rare Metals,2008,32(6):774(in Chinese).
许国栋,王凤娥.高温钛合金的发展和应用[J].稀有金属,2008,32(6):774.
42 Tetsui T. Development of a TiAl turbocharger for passenger vehicles[J].Materials Science and Engineering A,2002,329-331(1):582.
43 Djanarthany S, Viala J C, Bouix J. An overview of monolithic tita-nium aluminides based on Ti3Al and TiAl[J].Materials Chemistry and Physics,2001,72(3):301.
44 Tetsui T. Gamma Ti aluminides for non-aerospace applications[J].Current Opinion in Solid State and Materials Science,1999,4(3):243.
45 Cai Jianming, Huang Xu, Cao Chunxiao,et al. Microstructural evolution of near-α titanium alloy during long-term high temperature exposure and its influence on thermal stability[J].Journal of Aeronautical Materials,2010,30(1):11(in Chinese).
蔡建明,黄旭,曹春晓,等.近α型钛合金长时高温暴露过程中显微组织演变及其对热稳定性的影响[J].航空材料学报,2010,30(1):11.
46 Cui W F, Liu C M, Zhou L, et al. Characteristics of microstructures and second-phase particles in Y-bearing Ti-1100 alloy[J].Materials Science & Engineering A,2002,323(1-2):192.
47 Wei Baomin, Tai Limin. Progress in Ti-Al-Sn-Zr-Mo-Si high tempe-rature titanium alloy[J].Special Casting&Nonferrous Alloys,2013(5):424(in Chinese).
魏宝敏,台立民.Ti-Al-Sn-Zr-Mo-Si系高温钛合金的研究进展[J].特种铸造及有色合金,2013(5):424.
48 Xin Shewei, Hong Quan, Lu Yafeng,et al. Research on surface stability of Ti600 high-temperature titanium alloy at 600 ℃[J].Rare Metal Materials and Engineering,2011,40(8):1422(in Chinese).
辛社伟,洪权,卢亚锋,等.Ti600高温钛合金600 ℃下表面稳定性研究[J].稀有金属材料与工程,2011,40(8):1422.
49 Xin Shewei, Zhao Yongqing. Inductions and discussions of solid state phase transformation of titanium alloy(Ⅵ)—Alpha[J].Tianium Industry Progress,2013(4):1(in Chinese).
辛社伟,赵永庆.钛合金固态相变的归纳与讨论(Ⅵ)——阿尔法[J].钛工业进展,2013(4):1.
50 Xin Shewei, Hong Quan, Lu Yafeng,et al. Research on microstructure stability of Ti600 high-temperature titanium alloy at 600 ℃[J].Rare Metal Materials and Engineering,2010,39(11):41(in Chinese).
辛社伟,洪权,卢亚锋,等.Ti600高温钛合金600 ℃下组织稳定性研究[J].稀有金属材料与工程,2010,39(11):41.
51 Koike J, Egashira K, Maruyama K, et al. High temperature strength of α, Ti Al alloys with a locally ordered structure[J].Materials Science & Engineering A,1996,213(1):98.52 Shamblen C E. Embrittlement of titanium alloys by long time, high temperature exposure[J].Metallurgical Transactions,1971,2(1):277.
53 Gysler A, Weissmann S. Effect of order in Ti3Al particles and of temperature on the deformation behavior of age-hardened Ti-Al alloys[J].Materials Science & Engineering,1977,27(2):181.
54 Peng Na. The research on the effect of α2 phase critical size in high-temperature titanium alloy[D].Shenyang:Shenyang University,2007(in Chinese).
彭娜.高温钛合金中α2相的临界尺寸效应研究[D].沈阳:沈阳大学,2007.
55 Kppers M, Herzig C, Friesel M, et al. Intrinsic self-diffusion and substitutional Al diffusion in α-Ti[J].Acta Materialia,1997,45(10):4181.
56 Kppers M. Self-diffusion and group Ⅲ (Al, Ga, In) solute diffusion in hcp titanium[J].Defect & Diffusion Forum,1997,143-147(1):43.
57 Li Wenyuan, Chen Zhiyong, Liu Jianrong, et al. Effect of texture on anisotropy at 600 ℃ in a near-α titanium alloy Ti60 plate[J].Mate-rials Science & Engineering A,2017,688:322.
58 Zhao Z B, Wang Q J, Liu J R, et al. Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60[J].Acta Materialia,2017,131:305.
59 Zhao Z B, Wang Q J, Liu J R, et al. Characterizations of microstructure and crystallographic orientation in a near-α titanium alloy billet[J].Journal of Alloys & Compounds,2017,712:179.
[1] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[2] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[3] 刘泓吟, 杨宏宇, 陈明凤. 异氰酸酯指数对聚氨酯硬泡阻燃、热稳定性及燃烧性能的影响[J]. 材料导报, 2019, 33(12): 2071-2075.
[4] 施渊吉, 吴晓春, 闵娜. Fe-Cr-Mo-W-V系热作模具钢高温热稳定性机理研究[J]. 材料导报, 2018, 32(6): 930-936.
[5] 戎翔, 邓安仲, 李飞, 李丰恺. 柱胞夹芯复合材料设计加工及吸能性能研究现状[J]. 《材料导报》期刊社, 2018, 32(5): 822-827.
[6] 费志方, 李昆锋, 杨自春, 高文杰, 陈国兵. APTES交联型聚酰亚胺气凝胶的制备与表征[J]. 材料导报, 2018, 32(20): 3623-3627.
[7] 姚罡, 付明杰. TNW700高温钛合金热过程中的相组织变化分析[J]. 材料导报, 2018, 32(20): 3584-3589.
[8] 胡德超,贾志欣,钟邦超,董焕焕,丁勇,罗远芳,贾德民. 废印刷电路板非金属粉负载二氧化硅杂化填料的制备及其在不饱和聚酯中的应用[J]. 《材料导报》期刊社, 2018, 32(2): 278-281.
[9] 邓莉萍, 鲁世强, 林彦. 合金元素Ni对NbCr2/Nb合金热稳定性的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2442-2447.
[10] 刘建国, 安振涛, 张倩, 杜仕国, 姚凯, 王金. 硝酸羟胺的热稳定性评估及热分解机理研究*[J]. 《材料导报》期刊社, 2017, 31(4): 145-152.
[11] 雷若姗, 陈广润, 徐时清, 王焕平, 汪明朴. 大塑性变形工艺制备纳米晶过饱和固溶体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 130-134.
[12] 吴唯, 陈诗英, 宗孟静子. 纳米Al2O3/聚醚砜-环氧树脂复合材料的介电性能及热稳定性能[J]. 《材料导报》期刊社, 2017, 31(20): 21-24.
[13] 曾艳, 吴晓春, 夏书文, 左鹏鹏. 镍元素对新型压铸模具钢热稳定性的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 72-75.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed