Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22090099-7    https://doi.org/10.11896/cldb.22090099
  无机非金属及其复合材料 |
基于RSM-BBD的多源煤基固废胶结体配比及性能研究
赵新元1,2, 杨科1,2,3,*, 何祥1,2, 魏祯1,2, 于祥1,2, 张继强1,2
1 安徽理工大学深部煤矿采动响应与灾害防控国家重点实验室,安徽 淮南 232001
2 安徽理工大学矿业工程学院,安徽 淮南 232001
3 合肥综合性国家科学中心能源研究院(安徽省能源实验室),合肥 230000
Study on Proportioning and Performance of cemented Body from Multi-source Coal-based Solid Waste Based on RSM-BBD Experiment
ZHAO Xinyuan1,2, YANG Ke1,2,3,*, HE Xiang1,2, WEI Zhen1,2, YU Xiang1,2, ZHANG Jiqiang1,2
1 State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, Anhui, China
2 School of Mining Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
3 Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230000, China
下载:  全 文 ( PDF ) ( 6419KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用响应面法(RSM)Box-Behnken Design(BBD)模式对脱硫石膏、气化细渣和炉底渣等多源煤基固废进行配比优选,并研究了最优配比胶结体的力学性能、孔隙结构、热稳定性、微观结构等特性。结果表明:(1)气化细渣掺量对胶结体的1 d强度影响最大,脱硫石膏掺量对胶结体3 d和7 d强度影响最大,两种固废的交互作用对胶结体早期强度影响最显著,表现为负效应;在粉煤灰与矸石质量比为0.4∶1和质量浓度为80%的条件下,获得脱硫石膏、气化细渣和炉底渣的最优质量比为0.2∶0.1∶0.1,并分析了最优配比胶结体的压缩变形和破坏特征。(2)研究了胶结体的微观特性:胶结体内存在密集细颈型封闭孔隙,孔直径范围在5~3.7×105 nm,微孔较少,以中、大孔为主;胶结体在55~65 ℃和90~120 ℃区间出现游离水和结晶水的吸热脱水反应,在600~700 ℃区间出现结构水、羟基水的脱除和水化产物的分解,在800 ℃累计失重约8%。(3)煤基固废胶结体的水化反应以水泥为主,固废之间未发生化学反应,水化产物为少量短杆状钙矾石相和薄层绒状C-S-H凝胶;钙矾石中少量Al3+被Si4+取代,少量SO42-被CO32-取代。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵新元
杨科
何祥
魏祯
于祥
张继强
关键词:  煤基固废  胶结充填体  响应面法  配比优化  微观特性    
Abstract: In this work, the mix proportion of multi-source coal-based solid wastes such as desulfurization gypsum, gasification fine slag and furnace bottom slag was optimized by Box-Behnken Design (BBD) model in response surface methodology (RSM), the mechanical properties, pore structure, thermal stability, and microstructure of the cemented body with the optimal mix proportion were analyzed. The results showed that: (1) the content of gasification fine slag has the greatest influence on the one day strength of the cemented body, the content of desulfurization gypsum has the greatest influence on the three days and seven days strength of the cemented body, and the interaction of the two solid wastes has the most significant influence on the early strength of the cemented body, showing a negative effect; under the condition of mass ratio of 0.4∶1 between fly ash and coal gangue and mass concentration of 80%, the optimal mass mix proportion of desulfurization gypsum, gasification fine slag and furnace bottom slag is 0.2∶0.1∶0.1, and then the compression deformation and failure characteristics of the cemented body with the optimal mix proportion are analyzed. (2) The microscopic characteristics of the cemented body were studied. There are dense and narrow-necked closed pores in the cemented body, with pore diameter ranging from 5 nm to 3.7×105 nm and few micropores, mainly medium and large pores. The endothermic dehydration reaction of free water and crystal water occurs at 55—65 ℃ and 90—120 ℃, the removal of structural water and hydroxyl water and the decomposition of hydration products occur at 600—700 ℃, and the cumulative mass loss at 800 ℃ is about 8%. (3) The hydration reaction in cemented body is mainly cement, and there is no chemical reaction between coal-based solid wastes. The hydration products are a small amount of short rod-shaped ettringite phase and a thin layer of plush C-S-H gel; a small amount of Al3+ in ettringite is replaced by Si4+ and a small amount of SO42- is replaced by CO32-.
Key words:  coal-based solid waste    cemented backfill    response surface methodology (RSM)    proportioning optimization    microscopic cha-racteristics
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TD823.7  
基金资助: 国家重点研发计划课题(2019YFC1904304);合肥综合性国家科学中心能源研究院(安徽省能源实验室)项目(21KZS217);安徽省高校研究生科研项目 (YJS20210389)
通讯作者:  * 杨科,安徽理工大学矿业工程学院教授、博士研究生导师。2015年入选“国家百千万人才工程”;2016年获国务院特殊津贴,2021年入选国家矿山智能化建设专家委员会委员等。目前主要从事多源煤基固废协同利用与绿色开采、煤岩动力灾害监测预警与防控、废弃矿井资源开发与利用、煤炭安全智能精准开采等方面的研究工作。发表论文80余篇,包括《煤炭学报》《岩土力学》、Construction and Building Materials等。yksp2003@163.com   
作者简介:  赵新元,2020年6月于河北工程大学获得工学硕士学位,现为安徽理工大学矿业工程学院博士研究生,在袁亮院士和杨科教授的指导下开展研究。目前主要研究领域为多源煤基固废协同利用与绿色开采等。目前发表SCI/EI期刊论文6篇,授权国内外发明专利3项,实用新型专利5项等。
引用本文:    
赵新元, 杨科, 何祥, 魏祯, 于祥, 张继强. 基于RSM-BBD的多源煤基固废胶结体配比及性能研究[J]. 材料导报, 2024, 38(9): 22090099-7.
ZHAO Xinyuan, YANG Ke, HE Xiang, WEI Zhen, YU Xiang, ZHANG Jiqiang. Study on Proportioning and Performance of cemented Body from Multi-source Coal-based Solid Waste Based on RSM-BBD Experiment. Materials Reports, 2024, 38(9): 22090099-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090099  或          http://www.mater-rep.com/CN/Y2024/V38/I9/22090099
1 Yang K, Zhao X Y, He X, et al. Journal of China Coal Society, 2022,47(12),4201 (in Chinese).
杨科,赵新元,何祥,等.煤炭学报, 2022,47(12),4201.
2 Yang K, Wei Z, Zhao X Y, et al. Journal of China Coal Society, 2021,46(S2),925 (in Chinese).
杨科,魏祯,赵新元,等.煤炭学报, 2021,46(S2),925.
3 Capasso I, Lirer S, Flora A, et al. Journal of Cleaner Production, 2019, 22, 65.
4 Yuan L. Bulletin of Chinese Academy of Sciences, 2023, 38(1), 11 (in Chinese).
袁亮.中国科学院院刊, 2023, 38(1), 11.
5 Yang K, Zhao X Y, Wei Z, et al. Environmental Science and Pollution Research, 2021, 28(48), 67957.
6 Yin S H, Shao Y J, Wu A X, et al.Journal of Cleaner Production, 2020,247, 119590.
7 Chang Q L, Zhou H Q, Qin J Y, et al.Journal of Mining and Safety Engineering,2009,26(1),74 (in Chinese).
常庆粮,周华强,秦剑云,等.采矿与安全工程学报, 2009, 26(1),74.
8 Wu H, Zhao G Y, Chen Y.Journal of Harbin Institute of Technology,2017,49(11),101 (in Chinese).
吴浩,赵国彦,陈英.哈尔滨工业大学学报, 2017, 49(11),101.
9 Li X Z, Zhang H Z, Zhang S H, et al.Materials Reports, 2023, 37(8),70 (in Chinese).
李小占,张鸿泽,张苏花,等.材料导报,2023, 37(8),70.
10 Fu Z G, Qiao D P, Guo Z L, et al. Journal of China Coal Society, 2018, 43(3), 694 (in Chinese).
付自国,乔登攀,郭忠林,等.煤炭学报,2018,43(3),694.
11 Liu Y, He G C, Yuan M F, et al. Chinese Journal of Underground Space and Engineering, 2013, 9(1),113 (in Chinese).
刘永,贺桂成,袁梅芳,等.地下空间与工程学报, 2013,9(1),113.
12 Zhou M, Bai J T, Guo L Z, et al. Materials Reports, 2023, 37(20),123 (in Chinese).
周梅,白金婷,郭凌志,等.材料导报,2023, 37(20),123.
13 Wang C X, Liu Y, Hu H, et al. Advances in Civil Engineering, 2019, 2019, 2898019.
14 Fall M., Benzaazoua M, Saa E G. Tunnelling and Underground Space Technology, 2008, 23(1), 80.
15 Wang Q P, Wang H, Min F F. Journal of Functional Materials, 2015,46(23),23042(in Chinese).
王庆平,王辉,闵凡飞.功能材料,2015,46(23),23042.
16 Yin S H, Hao S, Zou L, et al. Journal of Central South University (Science and Technology), 2020, 51(6),1595(in Chinese).
尹升华,郝硕,邹龙,等.中南大学学报(自然科学版),2020,51(6),1595.
17 Liu S L, Wang F G, Li G C, et al. Acta Materiae Compositae Sinica, 2021, 38(8),2724 (in Chinese).
刘树龙,王发刚,李公成,等.复合材料学报,2021,38(8),2724.
18 Gao Q, Yang X B, Wen Z J, et al. Journal of Hunan University(Natural Sciences),2019,46(6),47(in Chinese).
高谦,杨晓炳,温震江,等.湖南大学学报(自然科学版),2019,46(6),47.
19 Lan W T, Wu A X, Wang Y M, et al. The Chinese Journal of Nonferrous Metals, 2019, 29(5),1083 (in Chinese).
兰文涛,吴爱祥,王贻明,等.中国有色金属学报,2019,29(5),1083.
20 Zhang J X, Li M, Taheri A, et al. Minerals, 2019, 9(1),53.
21 Liu S P, Zhang X W. China Resources Comprehensive Utilization, 2020, 38(3),75 (in Chinese).
刘淑鹏,张小伟.中国资源综合利用, 2020, 38(3), 75.
22 Wang Y M, Huang Y C, Hao Y X. Processes, 2020, 8(3),1.
23 Zhang X G, Lin J, Liu J X, et al. Energies, 2017, 10(9),1.
24 Wang Y Z, Tan Y, Wang Y C, et al. Construction and Building Mate-rials, 2020, 233,117166.
25 Li M, Zhang J X, Li A L, et al. Journal of Cleaner Production, 2020, 254,120113.
26 Zhang S G. Coal Mining Technology, 2013, 18(1), 66 (in Chinese).
张书国.煤矿开采,2013,18(1), 66.
27 Liu J G, Zhao Q B. Coal Science and Technology, 2010, 38(3),18 (in Chinese).
刘建功,赵庆彪.煤炭科学技术, 2010, 38(3),18.
28 Hodot B B, translated by Song S Z and Wang Y A. Coal and gas outburst,China Industry Press, 1966 (in Chinese).
B. B. 霍多特著, 宋士钊, 王佑安译. 煤与瓦斯突出,中国工业出版社, 1966.
29 Cheng B C, Liu R T, Li X H, et al. Construction and Building Mate-rials, 2022, 319,125831.
30 White C E, Kearley G J, Provis J L, et al. Chemical Physics, 2013, 427, 82.
31 Qian J S, Yu J C, Sun H Q, et al. Journal of the Chinese Ceramic Society,2017,45(11),1569 (in Chinese).
钱觉时,余金城,孙化强,等.硅酸盐学报,2017,45(11),1569.
32 You B K, Xi Y Z. China Building Materials Science & Technology, 2002(3),13 (in Chinese).
游宝坤,席耀忠.中国建材科技,2002(3),13.
[1] 秦怡歆, 曾凯, 邢保英, 张洪申, 何晓聪. 颗粒增强粘接层结构参数对连接强度的影响及工艺优化[J]. 材料导报, 2024, 38(6): 22060206-5.
[2] 肖瑶, 邓华锋, 李建林, 熊雨, 程雷. 利用Triton X-100提升巴氏芽孢杆菌脲酶活性的效果[J]. 材料导报, 2024, 38(1): 23060069-7.
[3] 李玉妍, 杨忠鑫, 陈南春, 莫胜鹏, 王秀丽, 解庆林. Zn2+交联海藻酸钠抑菌缓释微球制备及其抑菌效应[J]. 材料导报, 2022, 36(7): 21020040-7.
[4] 李正月, 李东泽, 孙秀英, 蔡沛文, 廖雨青, 陈秀琼, 颜慧琼, 林强. 球磨辅助海藻酸钠降解工艺参数的优化及其产物的结构和性能[J]. 材料导报, 2022, 36(6): 21010003-6.
[5] 宋学朋, 郝宇鑫, 王石, 刘晨晖, 张辽. 不同加载速率下差异性含水率尾砂胶结充填体力学行为及损伤特性研究[J]. 材料导报, 2022, 36(24): 21090173-10.
[6] 刘哲, 刘勇, 高广志, 李奇贵, 包阳阳, 马凤森. Plackett-Burman设计结合响应面法优化可溶性微针的制备工艺[J]. 材料导报, 2021, 35(z2): 593-599.
[7] 于泽明, 陈艳, 马嵘萍, 胡晓辰, 吕祥锋. 动/静荷载作用纤维-矿粉-聚苯乙烯混凝土吸能特征研究[J]. 材料导报, 2021, 35(z2): 669-677.
[8] 丁亚茹, 陈芙蓉, 杨帆, 贾翠玲. 响应面法分析7075铝合金激光焊接参数对焊接质量的影响规律[J]. 材料导报, 2021, 35(2): 2103-2108.
[9] 侯永强, 尹升华, 赵国亮, 张鹏强, 杨世兴, 张敏哲, 刘洪斌. 聚丙烯纤维增强尾砂胶结充填体力学及流动性能研究[J]. 材料导报, 2021, 35(19): 19030-19035.
[10] 陈定宁, 沈昊宇, 成瑾瑾, 胡美琴. “枣糕状”结构杂多酸离子液体负载磁性复合材料的制备及超声脱硫的催化性能[J]. 材料导报, 2021, 35(12): 12181-12189.
[11] 郭乃胜, 俞春晖, 王淋, 金鑫, 温彦凯. PR.M/胶粉复合改性沥青流变及微观特性研究[J]. 材料导报, 2021, 35(10): 10080-10087.
[12] 侯永强, 尹升华, 曹永, 戴超群. 基于RSM-BBD的混合骨料胶结充填体强度增长规律分析[J]. 材料导报, 2020, 34(14): 14063-14069.
[13] 王静文, 王伟. 玄武岩纤维增强泡沫混凝土响应面多目标优化[J]. 材料导报, 2019, 33(24): 4092-4097.
[14] 辛景舟, 周建庭, 肖阳剑, 李晓庆, 苏欣. 混凝土结构材料非线性本构参数识别算法研究[J]. 材料导报, 2018, 32(16): 2743-2749.
[15] 张兰芳,刘丽娜,曹 胜. 响应面方法优化碱激发矿渣-石粉水泥砂浆的研究[J]. 《材料导报》期刊社, 2017, 31(24): 15-19.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed