Early Mechanical Properties and Energy Evolution Characteristics of Alkali Slag Modified Backfill
SUN Haikuan1,2, GAN Deqing1,2,*, XUE Zhenlin1,2, LIU Zhiyi1,2, ZHANG Yajie1,2
1 College of Mining Engineering, North China University of Technology, Tangshan 063200, Hebei, China 2 Mining Development and Safety Technology Key Laboratory of Hebei Province, North China University of Technology, Tangshan 063200, Hebei, China
Abstract: To investigate the early mechanical properties and energy evolution characteristics of the alkali slag modified backfill, uniaxial compression test was carried out using WHY-600 press to analyze the compressive strength, elastic modulus, failure mode and energy change. Combined with the response surface methodology, the mass concentration, tailings gradation and alkali slag addition were analyzed to optimize the results. The results show that with the increase of alkali slag addition, the instability damage displacement, uniaxial compressive strength and elastic modulus of the backfill first increase and then decrease. When the amount of alkali slag addition is 5%, the backfill has high compressive strength and strong resistance to deformation. The dissipation energy, elastic deformation energy, strain energy per unit volume at peak strength and total energy of the backfill increase and then decrease with the increase of alkali slag addition. Under uniaxial compression, the failure model of the alkali slag modified backfill is semi-penetrating or penetrating oblique shear, parallel double crack and inverted Y-shaped fracture, and the degree of damage increases with the increase of alkali slag addition. It is recommended to prepare alkali slag modified backfill with 77% mass concentration, 3∶7 fine and coarse tailings gradation, and 5.35% alkali slag addition, and the calculated compressive strength is 5.345 8 MPa, which can satisfy the early production demand of the mine. The results provide some theoretical basis for the feasibility of alkali slag modified materials.
1 Miao C, Liang L X, Zhang F, et al. International Journal of Minerals Metallurgy and Materials, 2022, 29(3), 424. 2 Panagiotis G K, Eleni V, Eirini C,et al. Journal of Environmental Sciences, 2021, 99(1), 222. 3 Wellars U, Yang L, Muhammad K T, et al. Chinese Chemical Letters, 2020, 31(6), 1474. 4 Hou Y Q, Yin S H, Zhao G L, et al. Materials Reports, 2021, 35(19), 19030 (in Chinese). 侯永强, 尹升华, 赵国亮, 等. 材料导报, 2021, 35(19), 19030. 5 Zhen G Y, Zhou H Y, Zhao T T, et al. Chinese Journal of Chemical Engineering, 2012, 20(1), 80. 6 Wang Q P, Wang H, Kan F F. Materials Reports, 2015, 29(14), 135 (in Chinese). 王庆平, 王辉, 闵凡飞. 材料导报, 2015, 29(14), 135. 7 Cheng Q Q, Wang H D, Yin Q X, et al. Mining Safety & Environmental Protection,2024,51(1),161(in Chinese). 程强强,汪浩东,阴琪翔,等.矿业安全与环保,2024,51(1),161. 8 Chen Y Z, Pu X C, Yang C H, et al. Journal of Wuhan University of Technology-Materials Science, 2002(3), 60. 9 Stark J, Freyburg E. Journal of Wuhan University of Technology-Materials Science, 2010, 25(2), 332. 10 Li G N, Wang B M, Liu H. Journal of Wuhan University of Technology-Materials Science, 2019, 34(1), 114. 11 Liu Q, Zhang J K, Su Y W, et al. Journal of Wuhan University of Technology-Materials Science, 2021, 36(6), 871. 12 Zhao X H, Liu C Y, Zuo L M. Journal of Yangtze River Scientific Research Institute, 2018, 35(8), 72 (in Chinese). 赵献辉, 刘春原, 左丽明. 长江科学院院报, 2018, 35(8), 72. 13 Wu P, Zhang T, Geng Y Q, et al. China Powder Science and Technology, 2022, 28(1), 35 (in Chinese). 吴蓬, 张涛, 耿玉倩, 等. 中国粉体技术, 2022, 28(1), 35. 14 Hania M, Nader S, Pooria G, et al. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(2), 576. 15 Ji G D, Yang C H, Liu W, et al. Rock and Soil Mechanics, 2015, 36(8), 2169 (in Chinese). 冀国栋, 杨春和, 刘伟, 等. 岩土力学, 2015, 36(8), 2169. 16 Wang B M, Wang W L, Liang X X, et al. Journal of Wuhan University of Technology-Materials Science, 2021, 36(3), 364. 17 Sun W J, Yin W, Ouyang S Y, et al. Safety in Coal Mines, 2022, 53(2), 20 (in Chinese). 孙文杰, 殷伟, 欧阳神央, 等. 煤矿安全, 2022, 53(2), 20. 18 Sun X J, Liu J, Qiu J P, et al. Construction and Building Materials, 2022, 320, 126234. 19 Jiang H Q, Qi Z J, Yilmaz E, et al. Construction and Building Mate-rials, 2019, 218(10), 689. 20 Zhang S Y, Ren F Y, Zhao Y L, et al. Construction and Building Mate-rials, 2021, 283(6), 122686. 21 Cihangir F, Ercikdi B, Kesimal A, et al. Minerals Engineering, 2015, 83, 117. 22 Behera S K, Mishra D P, Singh P, et al. Construction and Building Materials, 2021, 309, 125120. 23 Sun S L, Zheng Q H, Tang J, et al. Rock and Soil Mechanics, 2012, 33(6), 1608 (in Chinese). 孙树林, 郑青海, 唐俊, 等. 岩土力学, 2012, 33(6), 1608. 24 Zhang X M, Hu S G, Yuan P. Journal of Anhui University of Science and Technology (Natural Science), 2020, 40(4), 67 (in Chinese). 张旭梦, 胡术刚, 袁鹏. 安徽理工大学学报(自然科学版), 2020, 40(4), 67. 25 Feng G R, Xie W S, Guo Y X, et al. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(4), 775 (in Chinese). 冯国瑞, 解文硕, 郭育霞, 等. 岩石力学与工程学报, 2022, 41(4), 775. 26 Zhao K, Song Y F, Yu X, et al. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(2), 282 (in Chinese). 赵康, 宋宇峰, 于祥, 等. 岩石力学与工程学报, 2022, 41(2), 282. 27 Ghirian A, Fall M. International Journal of Mining Science and Technology, 2016, 26(5), 809. 28 Hou C, Zhu W C, Yan B X, et al. Construction and Building Materials, 2020, 239, 117752. 29 Yin S H, Hou Y Q, Yang S X, et al. Journal of Central South University (Science and Technology), 2021, 52(3), 936 (in Chinese). 尹升华, 侯永强, 杨世兴, 等. 中南大学学报(自然科学版), 2021, 52(3), 936. 30 Xie H P, Ju Y, Li L Y. Chinese Journal of Rock Mechanics and Enginee-ring, 2005, 24(17), 3003 (in Chinese). 谢和平, 鞠杨, 黎立云. 岩石力学与工程学报, 2005, 24(17), 3003.