Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23070107-10    https://doi.org/10.11896/cldb.23070107
  无机非金属及其复合材料 |
层状双羟基氢氧化物及其衍生物在锂硫电池中的应用
葛世伟, 赵倩*, 刘玉, 刘耀阳, 韦楚
齐鲁工业大学(山东省科学院)生物基材料与绿色造纸国家重点实验室,制浆造纸科学与技术教育部重点实验室,济南 250353
Application of Layered Double Hydroxides and Their Derivatives in Lithium-Sulfur Batteries
GE Shiwei, ZHAO Qian*, LIU Yu, LIU Yaoyang, WEI Chu
State Key Laboratory of Bio-based Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
下载:  全 文 ( PDF ) ( 4737KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂硫电池具有超高的理论能量密度、较低的材料成本,是极有前途的下一代储能体系。但硫导电性差、充放电过程中的穿梭效应、体积膨胀、负极锂枝晶等问题造成锂硫电池的比容量低、容量衰减严重、库仑效率差,影响了其实际应用。层状双羟基氢氧化物(LDHs)是一种二维材料,具有可调节的插层结构、可控的表面化学性质和独特的拓扑转换特性,作为储能材料受到了广泛的关注。LDHs对多硫化物具有良好的约束能力,作为锂硫电池正极硫载体可以高效吸附和催化充放电过程中产生的多硫化物,减少多硫化物的迁移,加快氧化还原反应动力学,从而提升锂硫电池的电化学性能。此外,二维LDHs可涂覆于隔膜作为正极与隔膜间的中间层,通过物理作用阻挡多硫化物向负极的迁移,抑制穿梭效应;LDHs用于锂负极可以促进金属锂的均匀成核和沉积。目前LDHs在锂硫电池中应用广泛,本文综述了LDH及其衍生物在锂硫电池中的应用优势,介绍了其在锂硫电池正极、中间层、负极中的应用现状,指出了LDHs材料在锂硫电池中的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
葛世伟
赵倩
刘玉
刘耀阳
韦楚
关键词:  层状双羟基氢氧化物  可调节的插层结构  约束能力  锂硫电池    
Abstract: Lithium-sulfur (Li-S) batteries are promising next-generation energy storage systems due to their high theoretical energy density and low material cost. However, the application of Li-S batteries is hindered by the poor electrical conductivity of sulfur, the shuttle effect of polysulfide during charge-discharge process, the volume expansion and the lithium dendrites, which result in low capacity, severe capacity decay and inferior Coulombic efficiency of the batteries. Layered double hydroxides (LDHs) are two-dimensional materials with adjustable intercalation structure, controllable surface chemistry and unique topological conversion properties, which have received widespread attention in energy storage systems. In Li-S batteries, the LDHs have good confinement properties for polysulfides, which can efficiently adsorb and catalyze the polysulfides, accelerate the kinetics of the redox reaction when used as sulfur host, thus enhance the electrochemical performance of Li-S batteries. Moreover, the two-dimensional LDHs can also be used as an interlayer between cathode and separator to physically inhibit the shuttle effect of Li-S batteries. Furthermore, when used in lithium anode, the LDHs can promote the uniform nucleation and deposition of lithium metal. So, in this paper, we summarize the advantage of LDHs and their derivatives in the cathode, interlayer and anode of Li-S batteries, and point out the development direction of LDHs materials in Li-S batteries.
Key words:  layered double hydroxides    adjustable intercalation structure    confinement property    lithium-sulfur battery
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  O646  
基金资助: 国家自然科学基金(52102269);山东省自然科学基金(ZR2020QE06);齐鲁工业大学(山东省科学院)科教产融合试点工程基础研究类项目(2023PY008)
通讯作者:  * 赵倩,齐鲁工业大学轻工学部讲师、硕士研究生导师。2011年山东科技大学应用化学专业本科毕业,2014年北京化工大学材料科学与工程专业硕士毕业,2019年北京化工大学材料科学与工程专业博士毕业。目前主要从事锂硫电池正极/夹层材料、锂离子电池等方面的研究工作。发表论文19篇,包括Advanced Functional Materials、Small、Nanoscale、ACS Applied Materials & Interfaces等。qianyameng123@163.com   
作者简介:  葛世伟,现为齐鲁工业大学轻工学部、生物基材料与绿色造纸国家重点实验室硕士研究生,在赵倩讲师的指导下进行研究。目前主要研究领域为锂硫电池正极/夹层材料。
引用本文:    
葛世伟, 赵倩, 刘玉, 刘耀阳, 韦楚. 层状双羟基氢氧化物及其衍生物在锂硫电池中的应用[J]. 材料导报, 2024, 38(20): 23070107-10.
GE Shiwei, ZHAO Qian, LIU Yu, LIU Yaoyang, WEI Chu. Application of Layered Double Hydroxides and Their Derivatives in Lithium-Sulfur Batteries. Materials Reports, 2024, 38(20): 23070107-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070107  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23070107
1 Lin S, Dong J, Chen R, et al. Journal of Alloys and Compounds, 2023, 965, 171389.
2 Liu Q, Zhang Y, Zhou Y, et al. Journal of Solid State Electrochemistry, 2023, 27(3), 797.
3 Jiang Y, Yang Y, Zhang Q, et al. Materials Reports, 2024, 38(12), 12(in Chinese).
姜宇, 杨蓉, 张乾伟, 等. 材料导报, 2024, 38(12), 12.
4 Angulakshmi N, Dhanalakshmi R B, Sathya S, et al. Batteries & Supercaps, 2021, 4(7), 1064.
5 Tu J, Hao K, Li J, et al. Journal of Energy Storage, 2023, 72, 108423.
6 Xu J, Shui J, Wang J, et al. ACS Nano, 2014, 8(10), 10920.
7 Pope M A, Aksay I A. Advanced Energy Materials, 2015, 5(16), 1500124.
8 Wang J, Xie K, Wei B. Nano Energy, 2015, 15, 413.
9 Tian S, Zeng Q, Liu G, et al. Nano-micro Letters, 2022, 14(1), 196.
10 Wang H, Cui Z, He S A, et al. Nano-micro Letters, 2022, 14(1), 189.
11 Xie Y, Ao J, Zhang L, et al. Chemical Engineering Journal, 2023, 451, 139017.
12 Wang F, Jiang M, Zhao T, et al. Nano-micro Letters, 2022, 14(1), 169.
13 Dörfler S, Strubel P, Jaumann T, et al. Nano Energy, 2018, 54, 116.
14 Park S K, Lee J K, Kang Y C. Advanced Functional Materials, 2018, 28(18), 1705264.
15 Gueon D, Yoon J, Hwang J T, et al. Chemical Engineering Journal, 2020, 390, 124548.
16 Zhang Y, Li G, Wang J, et al. Advanced Functional materials, 2020, 30(22), 2001165.
17 Huang Y, Lin L, Zhang Y, et al. Nano-micro Letters, 2023, 15(1), 67.
18 Wang P, Zhang Z, Song N, et al. CCS Chemistry, 2023, 5(2), 397.
19 Wang J, Wang L, Li Z, et al. Journal of Electronic Materials, 2023, 52(6), 3526.
20 Liu T, Hu H, Ding X, et al. Energy Storage Materials, 2020, 30, 346.
21 Wu L, Liu G, Xu H, et al. RSC Advances, 2023, 13(20), 13892.
22 Hou R, Li Y, Wang Z, et al. Small, 2023, 19, 2300868.
23 Zhou Y, Shi T, Zhao C, et al. Materials Reports, 2024, 38(1), 14(in Chinese).
周宇祥, 施天宇, 赵晨媛, 等. 材料导报, 2024, 38(1), 14.
24 Hu J, Yue M, Zhang H, et al. Angewandte Chemie-International Edition, 2020, 59(17), 6715.
25 Zhou S, Yang X, Xu X, et al. Journal of the American Chemical Society, 2020, 142(1), 308.
26 De Moraes A C M, Hyun W J, Luu N S, et al. ACS Applied Materials & Interfaces, 2020, 12(7), 8107.
27 Hyun W J, De Moraes A C M, Lim J, et al. ACS Nano, 2019, 13(8), 9664.
28 Liu X, Wang Y, Yang Y, et al. Nano Energy, 2020, 70, 104550.
29 Lin H, Zhang S, Zhang T, et al. Advanced Energy Materials, 2019, 9(38), 1902096.
30 Zhang Y, Mu Z, Yang C, et al. Advanced Functional Materials, 2018, 28(38), 1707578.
31 Lin H, Yang L, Jiang X, et al. Energy & Environmental Science, 2017, 10(6), 1476.
32 Liang Q, Wang S, Jia X, et al. Journal of Materials Science & Technology, 2023, 151, 89.
33 Zhang M, Lu Y, Yue Z, et al. RSC Advances, 2023, 13(14), 9322.
34 Wang W, Wang X, Shan J, et al. Journal of Alloys and Compounds, 2023, 936, 168250.
35 Xu ZL, Lin S, Onofrio N, et al. Nature Communications, 2018, 9(1), 4164.
36 Liu Y, Liu Q, Zhang A, et al. ACS Nano, 2018, 12(8), 8323.
37 Ai W, Zhou W, Du Z, et al. Energy Storage Materials, 2017, 6, 112.
38 Sun J, Sun Y, Pasta M, et al. Advanced Materials, 2016, 28(44), 9797.
39 Choi G, Eom S, Vinu A, et al. Chemical Record, 2018, 18(7-8), 1033.
40 Yan Q, Hou X, Liu G, et al. Journal of Hazardous Materials, 2020, 400, 123260.
41 Wang Y, Zhang Y, Liu Z, et al. Angewanted Chemie-International Edition, 2017, 56(21), 5867.
42 Chen B, Zhang Z, Kim S, et al. ACS Applied Materials & Interfaces, 2018, 10(51), 44518.
43 Yu W, Sun L, Huo L, et al. ACS Applied Energy Materials, 2023, 6(10), 5548.
44 Zhang H, Li X, Yu D, et al. Plant Methods, DOI: 10.1186/s13007-023-01021-1.
45 Guo X, Chen Y, Qin J, et al. Polymer Composites, DOI: 10.1002/pc.27373
46 Xiao M, Wu C, Zhu J, et al. Nano Research, DOI: 10.1007/s12274-023-5608-z.
47 Chen S, Wu Z, Luo J, et al. Electrochimimca Acta, 2019, 312, 109.
48 Huang S, Wang Y, Hu J, et al. NPG Asia Materials, 2019, 11(1), 1.
49 Li J, Chen C, Chen Y, et al. Advanced Energy Materials, 2019, 9(42), 1901935.
50 Yang Y, Wu M, Zhu X, et al. Chinese Chemical Letters, 2019, 30(12), 2065.
51 Xie W, Song Y, Li S, et al. Energy & Environmental Materials, 2019, 2(3), 158.
52 Wang X, Cheng H, Gao X, et al. Chinese Chemical Letters, 2019, 30(4), 919.
53 Zhou L, Shao M, Wei M, et al. Journal of Energy Chemistry, 2017, 26(6), 1094.
54 Yang L, Yang T, Wang E, et al. Journal of Materials Science & Technology, 2023, 159, 33.
55 Ali S, Marwat M A, Khan M F, et al. Journal of Alloys and Compounds, 2023, 956, 170229.
56 Barghamadi M, Best A S, Bhatt A I, et al. Journal of Power Sources, 2015, 295, 212.
57 Guo P, Sun K, Shang X, et al. Small, 2019, 15(40), 1902363.
58 Wei H, Liu J, Liu Y, et al. Composites Communications, 2021, 28, 100973.
59 Zhang J, Li Z, Chen Y, et al. Angewandte Chemie-International Edition, 2018, 57(34), 10944.
60 Zhang J, Hu H, Li Z, et al. Angewanted Chemie-International Edition, 2016, 55(12), 3982.
61 Li J, Qiu W, Liu X, et al. ChemElectroChem, 2022, 9(6), 202101211.
62 Liu S, Zhang X, Wu S, et al. ACS Nano, 2020, 14(7), 8220.
63 Xiao R, Qiu W, Yang M, et al. ACS Applied Energy Materials, 2021, 4(11), 12623.
64 Dong H, Qi S, Wang L, et al. Small, 2023, 19, 2300843.
65 Qiu W, Li G, Luo D, et al. Advanced Science, 2021, 8(7), 2003400.
66 Li S, Zhang Y, Liu N, et al. Joule, 2020, 4(3), 673.
67 Li C, Zhao Y, Zhang Y, et al. Chemical Engineering Journal, 2021, 417, 129248.
68 Liu F, Wang E, Wu C, et al. Journal of Solid State Electrochemistry, 2021, 25(7), 2033.
69 Li R, Liu Y, Li H, et al. Small Methods, 2019, 3(1), 1800344.
70 Cui J, Li Z, Wang G, et al. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2020, 8(45), 23738.
71 Cui J, Li Z, Li J, et al. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2020, 8(4), 1193.
72 Liu Q, Han X, Park H, et al. ACS Applied Materials & Interfaces, 2021, 13(15), 17978.
73 Guo J, Xu Y, Wang C. Nano-micro Letters, 2011, 11(10), 4288.
74 Sun L, Li M, Jiang Y, et al. Nano-micro Letters, 2014, 14(7), 4044.
75 Gueon D, Hwang J T, Yang S B, et al. ACS Nano, 2018, 12(1), 226.
76 Zhou L, Li H, Zhang Y, et al. Materials Today Communications, 2021, 26, 102133.
77 Liu Q, Han X, Dou Q, et al. International Journal of Energy Research, 2022, 46(7), 9634.
78 Lan F, Zhang H, Fan J, et al. ACS Applied Materials & Interfaces, 2021, 13(2), 2734.
79 Liang Z, Lin D, Zhao J, et al. Proceedings of the National Academy of Science of the USA, 2016, 113(11), 2862.
80 Cloud J E, Wang Y, Li X, et al. Inorganic Chemistry, 2014, 53(20), 11289.
81 Li Z, Liu K, Fan K, et al. Angewanted Chemie-International Edition, 2019, 58(12), 3962.
82 Xiong Q, Li X, Zhou M, et al. Ionics, 2023, 29(5), 1741.
83 Luo K, Li Y, Yao J, et al. Applied Surface Science, 2023, 620, 156850.
84 Zhang K, Chen F, Pan H, et al. Inorganic Chemistry Frontiers, 2019, 6(2), 477.
85 Zhao J, Zhao D, Li L, et al. The Journal of Physical Chemistry C, 2020, 124(23), 12259.
86 Zhu X, Wang L, Bai Z, et al. Nano-micro Letters, 2023, 15(1), 75.
87 Liao X, Li Z, He Q, et al. ACS Applied Materials & Interfaces, 2020, 12(8), 9181.
88 Liu B, Huang S, Kong D, et al. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7(13), 7604.
89 Lv J, Ren H, Cheng Z, et al. Molecules, DOI: 10.3390/molecules28041823.
90 Zhang Y, Ma C, Zhang C, et al. Chemical Engineering Journal, 2023, 452, 139410.
91 Mosavati N, Salley S O, Ng K Y S, et al. Journal of Power Sources, 2017, 340, 210.
92 Chen Z, Lv W, Kang F, et al. The Journal of Physical Chemistry C, 2019, 123(41), 25025.
93 Zhu Y, He X, Mo Y. Advanced Science, 2017, 4(8), 1600517.
94 Li Z, Ma Z, Wang Y, et al. Science Bulletin, 2018, 63(3), 169.
95 Chen Y, Zhang W, Zhou D, et al. ACS Nano, 2019, 13(4), 4731.
96 Na T, Liu Y, Li X, et al. Applied Surface Science, 2020, 528, 146970.
97 Shen J, Xu X, Liu J, et al. ACS Nano, 2019, 13(8), 8986.
98 Yoo T, Maeng J Y, Park S, et al. Journal of Alloys and Compounds, 2023, 949, 169873.
99 Yang Q, Wei X, Cao X, et al. Chemical Engineering Journal, 2023, 452, 139638.
100 Duan J, Zou Y, Li Z, et al. Journal of Electroanalytical Chemistry, 2019, 847, 113187.
101 Li Z, Shao M, Zhou L, et al. Advanced Materials, 2016, 28(12), 2337.
102 Li Z, Shao M, Zhou L, et al. Nano Energy, 2016, 25, 100.
103 Shao H, Huang B, Liu N, et al. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(42), 16627.
104 Wang L, Zhu X, Guan Y, et al. Energy Storage Materials, 2018, 11, 191.
105 Wang R, Mi J, Dong X, et al. Chemistry of Materials, 2019, 31(11), 4258.
106 Abdul Razzaq A, Yao Y, Shah R, et al. Energy Storage Materials, 2019, 16, 194.
107 Lee J S, Jun J, Jang J, et al. Small, 2017, 13(12), 1602984.
108 Fang R, Chen K, Yin L, et al. Advanced Materials, 2019, 31(9), 1800863.
109 Han Y, Wang M, Dong Y, et al. Journal of Colloid and Interface Science, 2023, 644, 42.
110 Wang X, Lan D, Zhang D, et al. Energy Storage Science and Technology, 2022, 11(11), 3447(in Chinese).
王小飞, 蓝大为, 张道明, 等. 储能科学与技术, 2022, 11(11), 3447.
111 Zhong Y, Wang S, Sha Y, et al. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(24), 9526.
112 Liao K, Chen S, Wei H, et al. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(45), 23062.
113 Lu J, Zhang S, Miao Z, et al. ACS Applied Energy Materials, 2023, 6(9), 4724.
114 Chen Q, Zhou J, Zhu Y, et al. Energy & Fuels, 2023, 37(6), 4711.
115 Chen S, Han X, Luo J, et al. Chemical Engineering Journal, 2020, 385, 123457.
116 Zhao M, Liu X, Zhang Q, et al. ACS Nano, 2012, 6(12), 10759.
[1] 康小雅, 何天启, 朱福良, 冉奋. 蜂窝状多孔碳材料装载硫单质及其在锂硫电池中的储能性能研究[J]. 材料导报, 2024, 38(16): 23010004-6.
[2] 姜宇, 杨蓉, 张乾伟, 樊潮江, 董鑫, 蒋百铃, 燕映霖. 功能化MXene在锂硫电池中应用研究进展[J]. 材料导报, 2024, 38(12): 22100251-9.
[3] 黄少炎, 修慧娟, 王志雄, 樊莎, 王思敏, 邓自立, 李娜, 李金宝. 纳米纤维素基复合材料在锂硫电池中的应用研究进展[J]. 材料导报, 2024, 38(12): 22120181-6.
[4] 周宇祥, 施天宇, 赵晨媛, 尹海宏, 宋长青, 郁可. 聚苯胺包覆的硫化锌-碳纳米管用作正极载体材料提高锂硫电池性能[J]. 材料导报, 2024, 38(1): 22060085-7.
[5] 罗重阳, 李宇杰, 王丹琴, 刘双科, 陈宇方, 郑春满. 改性电解液促进均匀锂沉积的研究进展[J]. 材料导报, 2023, 37(6): 21070209-11.
[6] 崔春娟, 赵亚男, 刘跃, 武重洋, 张凯, 王妍, 魏剑. 花瓣状纳米硫和球状纳米硫的制备及性能[J]. 材料导报, 2023, 37(5): 21080095-11.
[7] 宋丽红, 张敏刚, 曹翔宇, 郭锦, 闫晓燕. S-N掺杂聚乙二醇用于锂硫电池的第一性原理研究[J]. 材料导报, 2023, 37(3): 21030173-5.
[8] 赵文文, 王韵芳, 段东红, 刘世斌, 周娴娴, 陈良. 金属有机骨架衍生的层状Co3O4/C在锂硫电池中的应用[J]. 材料导报, 2022, 36(6): 20120257-7.
[9] 魏士俊, 何润合, 李永兵, 靳艳梅, 张兴祥. 聚丙烯腈分子量对锂硫电池比容量和循环稳定性的影响[J]. 材料导报, 2022, 36(22): 21080285-6.
[10] 胡坤, 郭锦, 张敏刚, 连晋毅, 张怡轩, 李占龙. 金属化合物在锂硫电池正极材料及夹层中的应用[J]. 材料导报, 2022, 36(19): 21010010-11.
[11] 张苗, 魏志祥, 常晶晶. 柔性锂硫电池电极材料的结构设计[J]. 材料导报, 2022, 36(11): 21010030-11.
[12] 冯阳, 汪港, 陈君妍, 康卫民, 邓南平, 程博闻. 高性能锂硫电池研究进展与改进策略[J]. 材料导报, 2022, 36(11): 20080027-14.
[13] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[14] 贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
[15] 李晓丹, 胡心雨, 刘小平, 刘小清, 申渝, 唐莹, 冯佳成. 苯并噁嗪树脂的研究新进展:智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed