Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23060178-8    https://doi.org/10.11896/cldb.23060178
  无机非金属及其复合材料 |
氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响
郑栋浩1, 贺格平1,*, 弥元梅1, 皇甫慧君2, 张慧敏1, 李彦霞1, 袁蝴蝶1
1 西安建筑科技大学材料科学与工程学院,西安 710055
2 陕西化工研究院有限公司,西安 710069
Effect of the Amount of Graphene Oxide on the Electrochemical Properties of MoSe2 Composite rGO Electrode Materials
ZHENG Donghao1, HE Geping1,*, MI Yuanmei1, HUANGFU Huijun2, ZHANG Huimin1, LI Yanxia1, YUAN Hudie1
1 College of Materials Science and Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China
2 Shaanxi Chemical Reserch Institute Co.Ltd,Xi’an 710069,China
下载:  全 文 ( PDF ) ( 21448KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 开发高性能超级电容器电极材料在促进可再生能源的有效利用上起着重要作用,本工作采用简单一步水热法合成超级电容器用MoSe2-还原氧化石墨烯(rGO)复合电极材料(MoSe2 -rGO)。研究表明,氧化石墨烯(GO)添加量影响着复合材料的电化学性能,随着GO添加量增加,复合材料比电容呈现先增大后减小的趋势,GO添加量为30 mg的复合材料MoSe2-rGO-30在1 A·g-1条件下具有最佳比电容(558.2 F·g-1),在功率密度为990 W·kg-1时能量密度高达84.4 Wh·kg-1。反应动力学揭示出扩散电容主导MoSe2-rGO的电化学储能过程。Randles-Sevcik 方程计算的MoSe2-rGO-30离子扩散系数是纯MoSe2离子扩散系数的6.2倍。MoSe2与高导电性rGO的协同作用赋予MoSe2-rGO复合材料优异的电化学性能,表明MoSe2 -rGO复合材料具有作为高性能超级电容器电极材料的潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑栋浩
贺格平
弥元梅
皇甫慧君
张慧敏
李彦霞
袁蝴蝶
关键词:  二硒化钼  还原氧化石墨烯  超级电容器  电化学性能    
Abstract: The development of high-performance supercapacitor electrode materials plays an important role in promoting the effective use of renewable energy.In this work,MoSe2-reduced graphene oxide (rGO) composite electrode materials (MoSe2-rGO) for supercapacitors were synthesized by a simple one-step hydrothermal method.It was found that the addition amount of graphene oxide (GO) affected the electrochemical properties of the composites.As the amount of GO added increases,the specific capacitance of the composites increased first and then decreased.The MoSe2-rGO-30 composite with GO addition of 30 mg has the best specific capacitance of 558.2 F·g-1 at 1 A·g-1,and the energy density is as high as 84.4 Wh·kg-1 at a power density of 990 W·kg-1.The reaction kinetics reveals that the diffusion capacitance dominates the electrochemical energy storage process of MoSe2-rGO.The ion diffusion coefficient of MoSe2-rGO-30 calculated according to the Randles-Sevcik equation is 6.2 times that of pure MoSe2.The synergistic effect of MoSe2 and highly conductive rGO endows MoSe2-rGO composites with good electrochemical performance,indicating that MoSe2-rGO composites have the potential as electrode materials for high-performance supercapacitors.
Key words:  molybdenum diselenide    reduction of graphene oxide    supercapacitor    electrochemical performance
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TB34  
基金资助: 陕西省石油精细化学品重点实验室开放基金(SH1420SKF0003;SH1516SKF0002);陕西省大学生创新创业训练计划(4191;4602);西北工业大学凝固技术国家重点实验室基金(SKLSP201749);陕西省重点研发计划(2024GX-YBXM-394)
通讯作者:  *贺格平,西安建筑科技大学材料科学与工程学院副教授、硕士研究生导师。1995年沈阳理工大学材料科学与工程专业本科毕业,2006年西安电子科技大学材料科学与工程专业硕士学位毕业后到西安建筑科技大学工作至今;2016年西北工业大学材料学专业博士毕业。目前主要从事纳米材料结构设计、制备、表征及性能研究,超级电容器电极材料及储能研究,纳米结构气敏传感器传感机理研究等方面的研究工作。近年来发表学术论文30篇,主编教材2部。hgping2013@126.com   
作者简介:  郑栋浩,2018年7月南昌航空大学获得工学学士学位。现为西安建筑科技大学材料科学与工程学院硕士研究生,在贺格平老师的指导下进行研究。目前主要研究领域为超级电容器电极材料。
引用本文:    
郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
ZHENG Donghao, HE Geping, MI Yuanmei, HUANGFU Huijun, ZHANG Huimin, LI Yanxia, YUAN Hudie. Effect of the Amount of Graphene Oxide on the Electrochemical Properties of MoSe2 Composite rGO Electrode Materials. Materials Reports, 2024, 38(16): 23060178-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23060178  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23060178
1 Rahul K, Arora S. Materials Today:Proceedings, 2022, 54, 728.
2 Tanwar S, Singh N, Sharma A L. Journal of Energy Storage, 2022, 45, 103797. 1.
3 Sharma K, Arora A, Tripathi S K. Journal of Energy Storage, 2019, 21, 801.
4 Kumar N, Pradhan L, Jena B K. WIREs Energy and Environment, 2021, 11(1), 415.
5 Shao Y, El-Kady M F, Sun J, et al. Chemical Reviews, 2018, 118(18), 9233.
6 Yang H, Kannappan S, Pandian A S, et al. Nanotechnology, 2017, 28(44), 445401.
7 Eftekhari A. Applied Materials Today, 2017, 8, 1.
8 Li Y, Zhang Y, Tong X, et al. Journal of Materials Chemistry A, 2021, 9(3), 1418.
9 Huan Y, Zhu L, Li N, et al. Chinese Science Bulletin, 2020, 66(1), 34.
10 Luo Z, Zhou J, Wang L, et al. Journal of Materials Chemistry A, 2016, 4(40), 15302.
11 Wang M, Huang H X, Qi P T, et al. Materials Reports, 2019, 33(6), 927(in Chinese).
王鸣, 黄海旭, 齐鹏涛等. 材料导报, 2019, 33(6), 927.
12 Tan Y B, Lee J M. Journal of Materials Chemistry A, 2013, 1(47), 14814.
13 Yao Z, Yu C, Dai H, et al. Carbon, 2022, 187, 165.
14 Zhao X, Cai W, Yang Y, et al. Nano Energy, 2018, 47, 224.
15 Chen J, Yao B, Li C, et al. Carbon, 2013, 64, 225.
16 Upadhyay S, Pandey O P. Journal of Alloys and Compounds, 2021, 857, 157522.
17 Kang W W. Preparation of nickel (cobalt) and bismuth based electrode active materials and their electrochemical performances. Ph. D. Thesis, Southeast University, China, 2021(in Chinese).
康伟伟. 镍(钴)、铋基电极活性材料的制备及其电化学性能研究. 博士学位论文, 东南大学, 2021.
18 Lu Z C, Liu J. Kong L B. Solid State Ionics, 2022, 374, 115815.
19 Guo W, Le Q V, Hasani A, et al. Polymers, 2018, 10(12), 1309.
20 Su Q, Cao X, Yu T, et al. Journal of Materials Chemistry A, 2019, 7(40), 22871.
21 Wang Y, Kang W, Pu X, et al. Nano Energy, 2022, 93, 106897.
22 Hu X, Zhu R, Wang B, et al. Chemical Engineering Journal, 2022, 440, 135819.
23 Méndez-Reséndiz A, Antonio Méndez-Romero U, Antonio Mendoza-Jiménez R, et al. FlatChem, 2023, 38, 100483.
24 Arvas M B, Gürsu H, Gencten M, et al. Journal of Energy Storage, 2022, 55, 396.
25 Li X, Lai W, Gan Y, et al. Journal of Alloys and Compounds, 2022, 890, 161746.
26 Tanwar S, Singh N, Sharma A L. Materials Today:Proceedings, 2022, 57, 94.
27 Bui H T, Jang H, Ahn D, et al. Electrochimica Acta, 2021, 368, 137556.
28 Zhang B M, Zhang C B, Zhang H, et al. Applied Surface Science, 2020, 513, 145826.
29 Xu L, Ma L, Ling Y, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 551, 87.
30 Guo H, Ning J, Wang B, et al. Journal of Alloys and Compounds, 2021, 853, 157116.
31 Shen J, Wu J, Pei L, et al. Advanced Energy Materials, 2016, 6(13), 1600341.
32 Huang C P, Li S S, Qi T L, et al. Acta Materiae Compositae Sinica, 2021, 38(7), 2274(in Chinese).
黄翠萍, 黎杉珊, 漆天乐, 等. 复合材料学报, 2021, 38(7), 2274.
33 Sankar S, Inamdar A I, Im H, et al. Ceramics International, 2018, 44(14), 17514.
34 Zhao J, Jiang Y, Fan H, et al. Advanced Materials, 2017, 29(11), 1604569.
35 Gao X, Yue H, Guo E, et al. Journal of Materials Science:Materials in Electronics, 2017, 28(23), 17939.
36 Pallavolu M R, Banerjee A N, Nallapureddy R R, et al. Journal of Materials Science and Technology, 2022, 96, 332.
[1] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[2] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[3] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[4] 康小雅, 何天启, 朱福良, 冉奋. 蜂窝状多孔碳材料装载硫单质及其在锂硫电池中的储能性能研究[J]. 材料导报, 2024, 38(16): 23010004-6.
[5] 高雅倩, 赵亚娟, 谢会东, 胡昌宇, 王逸博, 王康康, 杨厂. 高比电容MOF衍生的介孔球状Co3O4/NiO/CuO[J]. 材料导报, 2024, 38(12): 22110033-7.
[6] 朱玉方, 张慧丽, 梁丰国, 杨新伟, 陈长科, 买买提江·依米提, 马俊红. 还原氧化石墨烯的可控制备及表征[J]. 材料导报, 2024, 38(12): 22110271-6.
[7] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[8] 王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
[9] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[10] 白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹. 丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性[J]. 材料导报, 2023, 37(5): 21080011-7.
[11] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[12] 盛蕊, 唐婷婷, 田敏, 袁舒慧, 张苏, 范壮军. 耐热酚醛树脂基活性炭的制备及其超级电容器性能研究[J]. 材料导报, 2023, 37(4): 21040224-7.
[13] 黄贤敏, 李紫薇, 张晓妍, 刘慧, 高红艳, 汪海. 核壳结构的V10O24·12H2O@ACFC:一种高性能对称超级电容器电极材料[J]. 材料导报, 2023, 37(21): 22050088-8.
[14] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[15] 颜冬仙, 樊新. rGO/NiCo复合材料制备及电化学性能研究[J]. 材料导报, 2023, 37(18): 22030311-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed