Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23040235-6    https://doi.org/10.11896/cldb.23040235
  金属与金属基复合材料 |
含孔洞Cu64Zr36及Cu/Cu64Zr36复合材料拉伸变形的分子动力学研究
李泽政, 申宏飞, 吴文平*
武汉大学土木建筑工程学院工程力学系,武汉 430072
Molecular Dynamics Study of Tensile Deformation Behaviors of Cu64Zr36 and Cu/Cu64Zr36 Composite with a Pre-existing Void
LI Zezheng, SHEN Hongfei, WU Wenping*
Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China
下载:  全 文 ( PDF ) ( 19713KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用分子动力学模拟研究了含孔洞Cu64Zr36金属玻璃和Cu/Cu64Zr36晶体/非晶复合材料的拉伸变形行为。结果表明:Cu64Zr36金属玻璃在加载过程中由孔洞引起的应变集中导致剪切转变区(STZ)被激活并诱发剪切带的形成,而 Cu/Cu64Zr36复合材料通过晶体相中的位错滑移有效避免了灾难性剪切局部化,阻碍了剪切带的扩展。应变局部化程度出现台阶式的跳跃主要由位错的成核和发射引起,而应变局部化程度的缓慢增加与STZ的激活有关,一旦剪切带形成会导致应变局部化程度的快速增加。孔洞的存在改变了剪切应变和非仿射平方位移的分布,原子剪切应变和非仿射平方位移最小值D2min的最大值总是分布在孔洞周围,使其成为最有可能位错成核、 STZ激活并诱发剪切带形成的位点。大量的位错运动和均匀的STZ激活是提高复合材料整体塑性的主要原因,晶体相中位错密度的变化与非晶相中的剪切带活动密切相关。当剪切带扩展受阻,只出现均匀的STZ激活,位错密度基本保持不变,应力累积。一旦STZ局部化,重新诱发剪切带的扩展,位错密度增加和应力释放,这也是Cu/Cu64Zr36复合材料应力波动的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李泽政
申宏飞
吴文平
关键词:  Cu/Cu64Zr36复合材料  剪切带  剪切转变区  位错  分子动力学模拟    
Abstract: In this work, the tensile deformation behaviors of Cu64Zr36 metallic glass and Cu/Cu64Zr36 crystalline/amorphous composite with a pre-existing void are investigated by molecular dynamics (MD) simulation. The results show that the strain concentration caused by void activates the shear transition zone (STZ) and induces the shear band formation of Cu64Zr36 metallic glass. However, the crystalline/amorphous composite effectively avoids catastrophic localization and hinders shear band propagation by dislocation slip in the Cu crystalline phase. A stepwise increase in the degree of the strain localization is mainly related to the nucleation and emission of dislocations, while the slow increase in the degree of the strain localization is related to the STZ activation, and once the shear band is formed, it will lead to a rapid increase in the degree of the strain localization. The existence of voids changes the distribution of shear strain:the peak shear strain is distributed around the void, where it is most likely to activate dislocation movement, STZ and embryonic shear band formation. Numerous dislocation movements and homogeneous STZ activation become the main reason for enhancing the global plasticity of the composites. The variation in the dislocation density in the crystalline phase closely correlates with the shear band activity in the amorphous phase. The dislocation density tends to stay constant and stress accumulation when the homogeneous STZ is activated and shear band is blocked. Once the STZ localization and shear band reactivates, dislocation density increases and stress releases, which are also the main reason for stress fluctuations in the crystalline/amorphous composites.
Key words:  Cu/Cu64Zr36 composite    shear band    shear transformation zone (STZ)    dislocation    molecular dynamics simulation
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  O344  
基金资助: 国家自然科学基金(12172259;11772236)
通讯作者:  * 吴文平,武汉大学土木建筑工程学院工程力学系教授、博士研究生导师。2010年北京交通大学工程力学系固体力学专业博士毕业,2012年德国伍珀塔尔大学机械工程专业博士后出站到武汉大学工作至今。目前主要从事高温合金、金属玻璃及其复合材料断裂损伤方面的研究工作。发表论文80余篇,包括International Journal of Plasticity、International Journal of Fatigue、International Journal of Solids and Structures、Mechanics of Materials、Theoretical and Applied Fracture Mechanics、Journal of Non-Crystalline Solids等。wpwu@whu.edu.cn   
作者简介:  李泽政,2020年6月于武汉大学获得工学学士学位。现为武汉大学土木建筑工程学院工程力学系硕士研究生,在吴文平教授的指导下进行研究。目前主要研究领域为晶体/非晶复合材料的断裂力学性能研究。
引用本文:    
李泽政, 申宏飞, 吴文平. 含孔洞Cu64Zr36及Cu/Cu64Zr36复合材料拉伸变形的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040235-6.
LI Zezheng, SHEN Hongfei, WU Wenping. Molecular Dynamics Study of Tensile Deformation Behaviors of Cu64Zr36 and Cu/Cu64Zr36 Composite with a Pre-existing Void. Materials Reports, 2024, 38(15): 23040235-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040235  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23040235
1 Schuh C A, Hufnagel T C, Ramamurty U. Acta Materialia, 2007, 55, 4067.
2 Gong X Y, Chen B, Wu W P. Chinese Journal of Solid Mechanics, 2020, 41(3), 231 (in Chinese).
巩晓雨, 陈斌, 吴文平. 固体力学学报, 2020, 41(3), 231.
3 Qu R T, Wang X D, Wu S J, et al. Acta Metallurgica Sinica, 2021, 57(4), 453 (in Chinese).
屈瑞涛, 王晓地, 吴少杰, 等. 金属学报, 2021, 57(4), 453.
4 Wang Y, Li J, Hamza A V, et al. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11155.
5 Jian W R, Wang L, Li B, et al. Nanotechnology, 2016, 27, 175701.
6 Sha Z D, Branicio P S, Lee H P, et al. International Journal of Plasticity, 2017, 90, 231.
7 Sha Z D, Teng Y, Liu Z S, et al. Chinese Journal of Solid Mechanics, 2018, 39(4), 333 (in Chinese).
沙振东, 腾云, 刘子顺, 等. 固体力学学报, 2018, 39(4), 333.
8 Sun P, Peng C, Cheng Y, et al. Computational Materials Science, 2019, 163, 290.
9 Tran A S. Journal of Non-Crystalline Solids, 2021, 559, 120685.
10 Nieh T G, Wadsworth J. Intermetallics, 2008, 16, 1156.
11 Tran A S. Physica Scripta, 2021, 96, 065402.
12 Hyde A, He J, Cui X, et al. Composites Part B:Engineering, 2020, 187, 107844.
13 Wu W P, Peng Z F, Şopu D, et al. Journal of Non-Crystalline Solids, 2022, 586, 121556.
14 Cui Y, Shibutani Y, Li S, et al. Journal of Alloys and Compounds, 2017, 693, 285.
15 Song H Y, Xu J J, Zhang Y G, et al. Materials & Design, 2017, 127, 173.
16 Luan Y W, Li C H, Han X J, et al. Molecular Simulation, 2017, 43, 1116.
17 Vardanyan V H, Avila K E, Küchemann S, et al. Computational Materials Science, 2021, 192, 110379.
18 Li J, Chen H, Feng H, et al. Journal of Materials Science & Technology, 2020, 54, 14.
19 Su M, Deng Q, An M, et al. Journal of Alloys and Compounds, 2021, 868, 159282.
20 Avila K E, Vardanyan V H, Küchemann S, et al. Applied Surface Science, 2021, 551, 149285.
21 Abdelmawla A, Phan T, Xiong L, et al. Journal of Materials Research, 2021, 36, 2816.
22 Plimpton S J. Journal of Computational Physics, 1995, 117, 1.
23 Mendelev M I, Sordelet D J, Kramer M J. Journal of Applied Physics, 2007, 102, 043501.
24 Wu W P, Şopu D, Eckert J. Materials, 2021, 14, 2756.
25 Stukowski A, Bulatov V V, Arsenlis A. Modelling and Simulation in Materials Science and Engineering, 2012, 20, 085007.
26 Honeycutt J D, Andersen H C. Journal of Physical Chemistry, 1987, 91, 4950.
27 Stukowski A. Modelling and Simulation in Materials Science and Engineering, 2010, 18, 015012.
28 Argon A S. Acta Metallurgica, 1979, 27, 47.
29 Falk M L, Langer J S. Physical Review E, 1998, 57, 7192.
30 WuW P, Şopu D, Yuan X, et al. Journal of Non-Crystalline Solids, 2021, 559, 120676.
31 Cheng Y Q, Cao A J, Ma E. Acta Materialia, 2009, 57, 3253.
[1] 田根, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 增材制造成形件中位错的研究进展[J]. 材料导报, 2024, 38(1): 22050294-11.
[2] 张隽, 冯瑞成, 姚永军, 杨晟泽, 曹卉, 付蓉, 李海燕. 片层状TiAl-Nb合金中γ/γ界面体系拉伸行为的原子模拟[J]. 材料导报, 2023, 37(6): 21080280-6.
[3] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[4] 吴护林, 李忠盛, 金应荣, 贺毅. 弹簧应力松弛反常载荷损失及原因分析[J]. 材料导报, 2023, 37(23): 22090089-6.
[5] 章凯倩, 王志伟, 曾少甫, 胡长鹰. 再生聚乙烯中挥发性气味物质扩散的分子动力学模拟[J]. 材料导报, 2023, 37(22): 22080036-8.
[6] 孙海猛, 牛赢, 焦锋, 王壮飞. 刀具前角对超声复合加工成形切屑组织与性能的影响[J]. 材料导报, 2023, 37(17): 22030291-7.
[7] 董会苁, 杨柳, 耿长建, 苏孺, 刘猛. 含空洞镍基单晶高温合金力学性能的分子动力学研究[J]. 材料导报, 2023, 37(15): 21100100-8.
[8] 白清顺, 郭万民, 窦昱昊, 郭永博, 张飞虎. 石墨烯与不锈钢微结构表面黏附行为的分子动力学模拟研究[J]. 材料导报, 2023, 37(1): 21050249-6.
[9] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[10] 翟海民, 欧梦静, 袁花妍, 崔帅, 李文生. 内生块体非晶复合材料的加工硬化行为研究进展[J]. 材料导报, 2022, 36(23): 20100214-9.
[11] 曹晶晶, 张玉迪, 邓玉媛, 徐新宇. 不同尺寸的碳纳米管接枝聚酰亚胺复合材料的分子动力学模拟[J]. 材料导报, 2022, 36(23): 21060264-5.
[12] 陈今良, 冯中学, 易健宏. CrCoNi中熵合金变形中位错与孪晶协调变形机制[J]. 材料导报, 2022, 36(14): 20090129-6.
[13] 黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021, 35(3): 3122-3128.
[14] 朱坤森, 陶平均, 张超汉, 陈育淦, 张维建, 杨元政. Zr基块体非晶合金的成分设计及其性能研究[J]. 材料导报, 2021, 35(24): 24113-24116.
[15] 余明华, 高杰维, 刘里根, 李亚波, 韩靖, 戴光泽, 赵君文. 外物损伤对S38C车轴钢疲劳性能的影响[J]. 材料导报, 2021, 35(20): 20092-20098.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed