Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23020205-6    https://doi.org/10.11896/cldb.23020205
  无机非金属及其复合材料 |
水泥基材料自修复颗粒的制备及修复效果事前快速评价方法
顾春平1,2, 双雨竹1, 马俊涛1, 周勇1, 杨杨1,2,*, 刘金涛1,2, 金城阳1
1 浙江工业大学土木工程学院,杭州 310023
2 浙江省工程结构与防灾减灾技术研究重点实验室,杭州 310023
Preparation of Self-healing Particles of Cement-based Materials and Rapid Evaluation Method for Their Repair Effect in Advance
GU Chunping1,2, SHUANG Yuzhu1, MA Juntao1, ZHOU Yong1, YANG Yang1,2,*, LIU Jintao1,2, JIN Chengyang1
1 College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
2 Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Hangzhou 310023, China
下载:  全 文 ( PDF ) ( 8301KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对多数水泥基材料自修复技术在渗漏水条件下修复物质被冲走、裂缝自修复效果难以达到预期且可修复裂缝宽度较窄的问题,本工作结合物理膨胀修复和化学反应修复的优点,以螯合处理的高吸水性树脂(Chelation super absorbent polymer,C-SAP)为物理修复剂,以反应修复剂(Reactive healing agents,RHA)和高性能混凝土膨胀剂(High performance calcium sulpho aluminate,HCSA)为化学修复剂,设计并制备了一种能在渗漏水条件下快速、高效修复裂缝的自修复颗粒,并改进了自制裂缝水渗透实验装置,开展了自修复颗粒修复效果的事前快速评价,最后采用X射线衍射分析方法分析了修复产物的物相组成。结果表明:自制裂缝水渗透实验装置能在将自修复颗粒应用于水泥基材料前有效且快速地评价颗粒的自修复效果,从而实现自修复颗粒组成的快速优选。当自修复颗粒中m(C-SAP)∶m(RHA)∶m(HCSA)=7.5∶32.5∶60,颗粒掺量为20%和30%时,其能够在672 h时完全封堵0.5 mm的裂缝;颗粒中的m(C-SAP)∶m(RHA)∶m(HCSA)=10∶30∶60且颗粒掺量为30%时,其能够在1 008 h时完全封堵0.6 mm的裂缝。在裂缝修复早期,C-SAP解螯合并吸水膨胀,快速封堵裂缝,降低水流量;随后,化学修复物质通过化学反应生成白云石、钙矾石和方解石等结晶产物,从而将裂缝修复。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
顾春平
双雨竹
马俊涛
周勇
杨杨
刘金涛
金城阳
关键词:  自修复  反应修复剂  高吸水性树脂  高性能混凝土膨胀剂  渗水装置    
Abstract: Under leakage condition, for most self-healing technologies of cement-based materials, the healing products in cracks will be washed away, and the healing of cracks will be less effective than expected. In this study, by combining the advantages of physical and chemical healing, a type of novel self-healing particle that can quickly and efficiently repair the cracks under the leakage condition was prepared and designed, using chelation super absorbent polymer (C-SAP) as physical healing agent and reactive healing agents (RHA), high performance calcium sulpho aluminate (HCSA) as chemical healing agents. Moreover, home-made water penetration experimental device was modified, the healing efficiency of self-healing particles was evaluated in advance. Finally, X-ray diffraction analysis was performed to detect the composition of healing products. The results showed that the home-made water penetration experimental device can effectively evaluate the self-healing efficiency of the particles before using in cement-based materials, which can quickly optimize the composition of self-healing particles. When m(C-SAP)∶m(RHA)∶m(HCSA)=7.5∶32.5∶60 in the self-healing particles, and the volume content of self-healing particles were 20% and 30%, the cracks with a width at 0.5 mm can be completely blocked at 672 h;when m(C-SAP)∶m(RHA)∶m(HCSA)=10∶30∶60 and the volume content of self-healing particles were 30%, crack with a width at 0.6 mm can be completely blocked at 1 008 h. In early ages of crack healing, the C-SAP de-chelated and then absorbed water and expanded, thus quickly blocked the cracks and reduced water flow. Subsequently, the chemical healing products, such as dolomlite, ettringite and calcite, were generated by chemical reactions to healing the cracks.
Key words:  self-healing    reactive healing agents    super absorbent polymer    high performance calcium sulpho aluminate    water penetration test device
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TU528  
基金资助: 浙江省重点研发计划(2021C01060);浙江省自然科学基金(LY22E080014;LY21E080016);浙江省博士后基金(ZJ2021126)
通讯作者:  * 杨杨,浙江工业大学教授、博士研究生导师,享受国务院特殊津贴专家。1982年、1998年和2021年分别于东南大学、日本宇都宫大学、日本广岛大学获学士、硕士和博士学位。1982年起在浙江工业大学土木工程学院工作至今。目前主要研究方向:高强高性能混凝土材料与结构、功能性土木工程材料、环境友好材料与结构。主持国家和省部级课题20项余项;获浙江省科技进步一等奖1项、建设部科技进步二等奖1项、日本混凝土学会论文奖2项;在国内外学术期刊及学术会议上发表论文160余篇,出版学术著作与教材5部,编写国家和行业标准4部,授权发明专利10件。yangyang@zjut.edu.cn   
作者简介:  顾春平,浙江工业大学土木工程学院副研究员、硕士研究生导师。2008年和2016年于东南大学材料科学与工程专业获学士和博士学位。2016年起在浙江工业大学土木工程学院工作至今。目前主要从事土木工程材料耐久性与体积变形、固废建材化利用、绿色建材等方面的研究工作。发表论文40余篇,包括Journal of Cleaner Production、Construction and Building Materials等。
引用本文:    
顾春平, 双雨竹, 马俊涛, 周勇, 杨杨, 刘金涛, 金城阳. 水泥基材料自修复颗粒的制备及修复效果事前快速评价方法[J]. 材料导报, 2024, 38(15): 23020205-6.
GU Chunping, SHUANG Yuzhu, MA Juntao, ZHOU Yong, YANG Yang, LIU Jintao, JIN Chengyang. Preparation of Self-healing Particles of Cement-based Materials and Rapid Evaluation Method for Their Repair Effect in Advance. Materials Reports, 2024, 38(15): 23020205-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020205  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23020205
1 Zhang M. A study on microcapsule based self-healing method and mechanism for cementitious composites. Ph. D. Thesis, Central South University, China, 2013 (in Chinese).
张鸣. 水泥基材料用微胶囊自修复技术与原理的研究. 博士学位论文, 中南大学, 2013.
2 Xie C Y, Luo S R. Journal of Fuzhou University (Natural Science Edition), 2005, 33(Z1), 147(in Chinese).
谢昌顺, 罗素蓉. 福州大学学报(自然科学版), 2005, 33(Z1), 147.
3 Sidiq A, Setunge S, Gravina R J, et al. Construction and Building Materials, 2020, 232, 117239.
4 Li X H, Liu R T, Li S C, et al. Construction and Building Materials, 2022, 357, 129410.
5 Xiao X, Tan A C Y, Unluer C, et al. Cement and Concrete Composites, 2023, 136, 104863.
6 Xu J, Tang Y H, Wang X Z. Materials Reports, 2021, 35 (22), 22039 (in Chinese).
徐晶, 唐一洪, 王先志. 材料导报, 2021, 35 (22), 22039.
7 Wang Y S, Wang X Y. Case Studies in Construction Materials, 2022, 17, e01585.
8 Jin H D, Yang Y, Gu C P, et al. Concrete, 2019 (3), 124 (in Chinese).
金海东, 杨杨, 顾春平, 等. 混凝土, 2019 (3), 124.
9 Kunieda M, Kang C, Ueda N, et al. Journal of Advanced Concrete Technology, 2012, 10 (9), 313.
10 He J L, Shi X M, Journal of Building Engineering, 2021, 44, 102602.
11 Yang Z X, Hollar J, He X D, et al. Cement and Concrete Composites, 2011, 33 (4), 506.
12 Yang M Y, Zeng J J, Wang S N, et al. Bulletin of the Chinese Ceramic Society, 2017, 36 (10), 3542 (in Chinese).
杨敏毅, 曾俊杰, 王胜年, 等. 硅酸盐通报, 2017, 36 (10), 3542.
13 Du W, Yu J Y, He B Y, et al. Construction and Building Materials, 2020, 231, 117060.
14 Azamian I, Allahkaram S R, Teymouri F, et al. Journal of Molecular Liquids, 2022, 368, 120631.
15 Jiang Z W. Cement-based self-healing material:theory and method, Tongji University Press, China, 2018 (in Chinese).
蒋正武. 水泥基自修复材料:理论与方法, 同济大学出版社, 2018.
16 Jiang Z W, Yuan Z C, Li W T. Construction and Building Materials, 2019, 201, 807.
17 Roy R, Rossi E, Silfwerbrand J, et al. Construction and Building Materials, 2021, 297, 123793.
18 Chen M Y. Influence of mineral additives on self-healing effect of cement-based materials and investigation on healing mechanism. Master’s Thesis, Shandong University, China, 2020 (in Chinese).
程梦莹. 矿物添加剂对水泥基材料自修复效果的影响及修复机制研究. 硕士学位论文, 山东大学, 2020.
19 Ahn T H, Kishi T. Journal of Advanced Concrete Technology, 2010, 8 (2), 171.
20 Hong G, Choi S. Construction and Building Materials, 2017, 143, 366.
21 Zhou Y M, Elchalakani M, Du P, et al. Cement and Concrete Composites, 2023, 135, 104816.
22 Li D S, Chen B, Chen X H, et al. Construction and Building Materials, 2020, 247, 118521.
23 Ma L, Liu X X, Zhou S S, et al. Materials Reports, 2021, 35 (22), 22172 (in Chinese).
马砺, 刘西西, 周莎莎, 等. 材料导报, 2021, 35(22), 22172.
24 Zhang X W, Bai B, He Y H, et al. Materials Reports, 2016, 30 (10), 61 (in Chinese).
张学文, 白波, 何云华, 等. 材料导报, 2016, 30 (10), 61.
25 Summa D, Filho H R T, Snoeck D, et al. Journal of Cleaner Production, 2022, 358, 201.
26 Zhang L, Suleiman A R, Ne Hdi M L. Construction and Building Materials, 2020, 262, 1.
27 Hu X, Xiao J, Zhang Z, et al. Journal of Building Engineering, 2022, 50, 104184.
28 Jin C Y. Experimental study on the evaluation of the repair performance of self-healing materials for cracks. Master’s Thesis, Zhejiang University of Technology, 2019.
金城阳. 裂缝自修复材料修复性能评价的实验研究. 硕士学位论文, 浙江工业大学, 2019.
[1] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[2] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[3] 赵清平, 亢淑梅, 邹方正, 朱忠博, 李鹏宇. 甘油微胶囊搭载硅烷环氧共混涂层的耐蚀性研究[J]. 材料导报, 2024, 38(7): 22080166-6.
[4] 侯福星, 白一鸣, 沈頔, 王剑云. 微生物自修复混凝土载体材料研究进展[J]. 材料导报, 2024, 38(13): 23040048-15.
[5] 张立卿, 余家乐, 王云洋, 韩宝国, 陈梦成, 许开成. 渗透结晶水泥基复合材料研究综述[J]. 材料导报, 2024, 38(13): 22100014-16.
[6] 李辉, 郭润兰, 黄华, 黄晖阳. 基于扩展有限元方法的自愈微胶囊和基体力学性能适配的研究[J]. 材料导报, 2024, 38(13): 22100029-8.
[7] 刘亚豪, 王源升, 杨雪, 黄威, 李科, 王轩. 自修复聚氨酯材料的研究进展[J]. 材料导报, 2024, 38(1): 22050280-10.
[8] 沈士泰, 陈雨晨, 卫国英, 朱本峰. CeO2/铝合金自修复阳极氧化复合膜的电化学制备及表面性能[J]. 材料导报, 2023, 37(S1): 23030301-5.
[9] 刘晓英, 阮文琳, 张育新, 饶劲松, 尹长青, 张贤明, 柳云骐. 无机-有机杂化微胶囊:制备技术及在抗磨耐腐蚀涂层中的应用[J]. 材料导报, 2023, 37(9): 21060113-9.
[10] 卫元坤, 张优, 张政, 王菊萍, 陈飞. 基于缓蚀剂微/纳米容器的智能自修复涂层研究进展[J]. 材料导报, 2023, 37(8): 21050145-10.
[11] 李双捷, 马昆林, 龙广成, 谢友均, 曾晓辉. 持续荷载作用下砂浆裂缝的自修复性能及其评价指标[J]. 材料导报, 2023, 37(5): 21070056-9.
[12] 杨海涛, 卞洪健, 刘娟红. 水泥基材料中SAP的吸水、释水和再膨胀行为综述[J]. 材料导报, 2023, 37(4): 21030240-7.
[13] 曾舜柯, 翟彦博, 彭和, 魏子伟, 张毅, 胡小骞. 8-HQ插层铝合金MAO-LDHs复合膜的自修复行为研究[J]. 材料导报, 2023, 37(20): 22040022-6.
[14] 常洪雷, 李晨聪, 王晓龙, 王剑宏, 王云飞, 曲明月, 刘健. 复合矿物掺合料对砂浆自修复性能的影响[J]. 材料导报, 2023, 37(2): 21070177-7.
[15] 叶姣凤, 王飞, 张钧翔, 左洋, 冯利邦, 罗晓晓. 热可逆聚氨酯改性自修复环氧树脂的力学性能和自修复行为[J]. 材料导报, 2023, 37(14): 22010044-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed