Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 23030015-11    https://doi.org/10.11896/cldb.23030015
  无机非金属及其复合材料 |
二氧化锰基催化剂催化氧化甲苯的进展
宋杰1, 丁红蕾1,2,3,*, 潘卫国1,2,3,*, 张凯1, 马骏驰1, 张子沂1
1 上海电力大学能源与机械工程学院,上海 200090
2 上海发电环保工程技术研究中心,上海 201600
3 机械工业清洁发电环保技术重点实验室,上海 200090
Advances in the Catalytic Oxidation of Toluene by MnO2-based Catalysts
SONG Jie1, DING Honglei1,2,3,*, PAN Weiguo1,2,3,*, ZHANG Kai1, MA Junchi1, ZHANG Ziyi1
1 College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
2 Shanghai Power Environmental Protection Engineering Technology Research Center, Shanghai 201600, China
3 Key Laboratory of Environmental Protection Technology for Clean Power Generation in Machinery Industry, Shanghai 200090, China
下载:  全 文 ( PDF ) ( 30469KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着我国产业升级和能源消费的增加,甲苯污染已成为一个重要的环境问题。现有甲苯处理方法中,催化氧化技术无疑是最为经济且有效的技术手段。而作为催化反应核心的催化剂,其性能尤为重要。贵金属催化剂虽然拥有活性优势,但烧结、毒化带来的活性下降以及高昂的价格阻碍了其在工业领域的广泛应用。过渡金属氧化物催化剂中,二氧化锰(MnO2)由于其高催化活性、热稳定性、价格低廉、易于合成以及多种晶体形态可用的特点,近年来在甲苯催化氧化领域备受关注。但单一MnO2的催化活性很难令人满意,对其改性优化就成为当前工作的重点。本文分析了MnO2的晶体结构、表面特性和特定晶面等结构特点对甲苯催化效率的影响,重点探讨了通过掺杂、复合以及负载等改性手段提升MnO2催化氧化甲苯的性能,并阐述了甲苯在MnO2上的催化氧化机理,对制备用于催化甲苯的新型MnO2催化剂的未来研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋杰
丁红蕾
潘卫国
张凯
马骏驰
张子沂
关键词:  MnO2  催化甲苯  催化机理  影响因素  改性优化    
Abstract: Owing to industrial development and increasing energy consumption in China, toluene pollution has become a serious environmental concern. Among the existing toluene treatment methods, catalytic oxidation is undoubtedly the most economical and effective technical approach. The performance of the catalyst, which is the core of the catalytic reaction, is particularly essential. Although noble metal catalysts possess excellent catalytic activity, their high cost and the decrease in activity due to sintering and poisoning hinder their widespread application in industry. In recent years, manganese dioxide (MnO2) has attracted much attention as a transition metal oxide catalyst for the catalytic oxidation of toluene owing to its high catalytic activity, thermal stability, low cost, and easy synthesis, as well as the availability of various crystal forms. However, the catalytic activity of single MnO2 is unsatisfactory, prompting the present study on its modification and optimization. We analyzed the effects of the structural characteristics of MnO2, such as the crystal structure, surface properties, and specific crystalline surfaces, on the catalytic efficiency of toluene. Further, we aimed to improve the performance of MnO2 for the catalytic oxidation of toluene through modification approaches like doping and composite loading and to elucidate the catalytic oxidation mechanism of toluene on MnO2. The direction of future research on the preparation of novel MnO2 catalysts for toluene catalysis is outlined herein.
Key words:  MnO2    catalyzing toluene    catalytic mechanism    influencing factor    modification and optimization
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  X511  
  TQ-9  
基金资助: 国家重点研发计划项目(2018YFB0604204);上海市科技攻关项目(21DZ1207203)
通讯作者:  *潘卫国,1987年于上海电力大学取得学士学位,1994年于浙江大学取得硕士学位,1997年于浙江大学取得博士学位,目前任能源与机械工程学院党委书记,兼任中国动力工程学会环保专委会主任委员。目前主要研究方向为能源清洁高效利用和光催化过程的能源转化与环境保护。主持并参与了国家“973”“863”、科技支撑计划、重点研发计划、国家自然科学基金。发表含 ESI 高被引论文、SCI论文在内的国内外学术论文160余篇,申请发明专利60余项。pweiguo@163.com
丁红蕾,1990 年于中国石油大学取得学士学位,1997 年于中国石油大学取得硕士学位,2010 年于浙江大学取得博士学位,目前主要从事燃煤烟气污染物控制方面的相关研究。主持或参与了多项科研项目的研究工作。近年来已在国内外学术期刊上 发表论文20余篇,其中 SCI检索10篇,EI检索14篇。申请/授权专利多项。hlding2005@163.com   
作者简介:  宋杰,2018年7月于山西大学获得工学学士学位。现为上海电力大学大学能源与机械学院硕士由丁红蕾副教授和潘卫国教授联合培养。目前主要研究领域为VOCs的热催化氧化。
引用本文:    
宋杰, 丁红蕾, 潘卫国, 张凯, 马骏驰, 张子沂. 二氧化锰基催化剂催化氧化甲苯的进展[J]. 材料导报, 2024, 38(13): 23030015-11.
SONG Jie, DING Honglei, PAN Weiguo, ZHANG Kai, MA Junchi, ZHANG Ziyi. Advances in the Catalytic Oxidation of Toluene by MnO2-based Catalysts. Materials Reports, 2024, 38(13): 23030015-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030015  或          http://www.mater-rep.com/CN/Y2024/V38/I13/23030015
1 Li X, Zhang L, Yang Z, et al. Separation and Purification Technology, 2020, 235, 116213.
2 Almaie S, Vatanpour V, Rasoulifard M H, et al. Chemosphere, 2022, 306, 135655.
3 Sun J, Wu F, Hu B, et al. Atmospheric Environment, 2016, 141, 560.
4 Zhang J, Xiao J, Chen X, et al. Journal of Environmental Sciences, 2018, 69(07), 159.
5 Liu R, Wu H, Shi J H, et al. Catalysis Science & Technology, 2022, 12(23), 6945.
6 Guo Y L, Wen M C, Li G Y, et al. Applied Catalysis B-Environmental, 2021, 281, 119447.
7 Wang N, Shi M L, Wu S M, et al. Atmosphere, 2022, 13(8), 1241.
8 Liu S, Chen J, Peng Y, et al. Chemical Engineering Journal, 2018, 334, 191.
9 Ma X, Wang W, Sun C, et al. Environmental Pollution, 2021, 285, 117675.
10 Cichowska-Kopczyńska I, Joskowska M, Debski B, et al. Journal of Membrane Science, 2018, 566, 367.
11 Mathur A K, Majumder C B and Chatterjee S, Journal of Hazardous Materials, 2007, 148(2), 64.
12 Muoz-Batista M J, Bertolini G R, Cabello C I, et al. Applied Catalysis B: Environmental, 2018, 238, 381.
13 Rokicińska A, Drozdek M, Dudek B, et al. Applied Catalysis B: Environmental, 2017, 212, 59.
14 Chen X, Wang Y, Li J, et al. Journal of Environmental Sciences, 2022, 116, 114.
15 Okumura K and Iiyoshi H, Microporous and Mesoporous Materials, 2021, 325, 111336.
16 Liu Y, Dai H, Deng J, et al. Journal of Catalysis, 2013, 305, 146.
17 Reddy K H P, Kim B-S, Lam S S, et al. Environmental Research, 2021, 195, 110876.
18 Li J R, Zhang W P, Li C, et al. Journal of Colloid and Interface Science, 2021, 591, 396.
19 Wang P, Wang J, An X, et al. Applied Catalysis B: Environmental, 2021, 282, 119560.
20 Su Z, Si W, Liu H, et al. Environmental Science & Technology, 2021, 55(18), 12630.
21 Wang Y, Wu J, Wang G, et al. Applied Catalysis B: Environmental, 2021, 285, 119873.
22 Zhang K, Ding H, Pan W, et al. Environmental Science & Technology, 2022, 56(13), 9220.
23 Sophiana I, Topandi A, Iskandar F, et al. Materials Today Chemistry, 2020, 17, 100305.
24 Du Y, Meng Q, Wang J, et al. Microporous and mesoporous materials, 2012, 162, 199.
25 Lu Y, Deng H, Pan T, et al. Environmental Science & Technology, 2023, 57(7), 2918.
26 Liu W, Xiang W, Chen X, et al. Fuel, 2022, 312, 122975.
27 Wang H J, Liu F T, Yang W T, et al. Aerosol and Air Quality Research, 2022, 22(2), 210365.
28 Fang R M, Huang J, Huang X Y, et al. Chemosphere, 2022, 289, 133081.
29 Zeng J, Xie H, Zhang H, et al. Chemosphere, 2022, 291, 132890.
30 Yang W, Su Z A, Xu Z, et al. Applied Catalysis B: Environmental, 2020, 260, 118150.
31 Li R, Zhang L, Zhu S, et al. Applied Catalysis A: General, 2020, 602, 117715.
32 Dinh M T N, Nguyen C C, Vu T L T, et al. Applied Catalysis A: General, 2020, 595, 117473.
33 Wang F, Dai H, Deng J, et al. Environmental Science & Technology, 2012, 46(7), 4034.
34 Zeng X, Cheng G, Liu Q, et al. Industrial & Engineering Chemistry Research, 2019, 58(31), 13926.
35 Li Q, Odoom-Wubah T, Zhou Y, et al. Industrial & Engineering Chemistry Research, 2019, 58(8), 2882.
36 Huang J, Fang R, Sun Y, et al. Chemosphere, 2021, 263, 128103.
37 Chen Z, Pan D, Zhao B, et al. ACS Nano, 2010, 4(2), 1202.
38 Julien C M, Massot M, Poinsignon C. Spectrochim Acta A Mol Biomol Spectrosc, 2004, 60(3), 689.
39 Fan J, Ren Q, Mo S, et al. ChemCatChem, 2020, 12(4), 1046.
40 Devaraj S, Munichandraiah N. The Journal of Physical Chemistry C, 2008, 112(11), 4406.
41 Chen K, Sun C, Xue D. Physical Chemistry Chemical Physics, 2015, 17(2), 732.
42 Sivakumar P, Raj C J, Park J, et al. Ceramics International, 2022, 48(7), 9459.
43 Khalid S, Cao C B. New Journal of Chemistry, 2017, 41(13), 5794.
44 Si W, Wang Y, Peng Y, et al. Chemical Communications, 2020, 51(81), 14977.
45 Huang N, Qu Z, Dong C, et al. Applied Catalysis A: General, 2018, 560, 195.
46 Wang S C, Liu G, Wang L Z. Chemical Reviews, 2019, 119(8), 5192.
47 Liu G, Yu J C, Lu G Q, et al. Chemical Communications, 2011, 47(48), 12889.
48 Chu K, Liu Y P, Li Y B, et al. Applied Catalysis B: Environmental, 2020, 264, 118525.
49 Zhang X, Yang Y, Zhu Q, et al. Journal of Colloid and Interface Science, 2021, 598, 324.
50 Zhai X, Jing F, Li L, et al. Fuel, 2021, 283, 118888.
51 Peng K, Hou Y, Zhang Y, et al. Fuel, 2022, 314, 123123.
52 Dong C, Qu Z, Jiang X, et al. Journal of Hazardous Materials, 2020, 391, 122181.
53 Zhu Q, Jiang Z, Ma M, et al. Catalysis Science & Technology, 2020, 10(7), 2100.
54 Dong Y, Zhao J, Zhang J Y, et al. Chemical Engineering Journal, 2020, 388, 124244.
55 Li L, Luo J, Liu Y, et al. ACS Applied Materials & Interfaces, 2017, 9(26), 21798.
56 Liu W, Xiang W, Guan N, et al. Separation and Purification Technology, 2022, 278, 119590.
57 Li J, Qu Z, Qin Y, et al. Applied Surface Science, 2016, 385, 234.
58 Sun H, Yu X, Yang X, et al. Catalysis Today, 2019, 332, 153
59 Ye Q, Zhao J, Huo F, et al. Microporous & Mesoporous Materials, 2013, 172, 20.
60 Mo S, Zhang Q, Zhang M, et al. Nanoscale Horizons, 2019, 4(6), 1425.
61 Xia Y, Xia L, Liu Y, et al. Journal of Environmental Sciences, 2018, 64, 276.
62 He J, Chen D, Li N, et al. Green Energy & Environment, 2022, 7(6), 1349.
63 Mo S, Li J, Liao R, et al. Chemical Engineering Journal, 2021, 418, 129399.
64 Dong N, Ye Q, Xiao Y, et al. Catalysis Science & Technology, 2022, 12(7), 2197.
65 Si W, Wang Y, Zhao S, et al. Environmental Science & Technology, 2016, 50(8), 4572.
66 Li L, Liu Y, Liu J, et al. Catalysts, 2022, 12(12), 1666.
67 Liu L, Li J, Zhang H, et al. Journal of Hazardous Materials, 2019, 362, 178.
68 Qi M, Li Z, Zhang Z, et al. Chinese Chemical Letters, 2023, 34(2), 107437.
69 Xue T, Li R, Zhang Z, et al. Journal of Environmental Sciences, 2020, 96, 194.
70 Hu P, Huang Z, Amghouz Z, et al. Angewandte Chemie, 2014, 126(13), 3486.
71 Zeng X, Li B, Liu R, et al. Chemical Engineering Journal, 2019, 384, 123362.
72 Wei C, Xu C, Li B, et al. Journal of Power Sources, 2013, 234(15), 1.
73 Ma M, Zhu Q, Jiang Z, et al. Journal of Colloid and Interface Science, 2021, 598, 238.
74 Li L, Wahab M A, Li H, et al. ACS Applied Nano Materials, 2021, 4(7), 6637.
75 Sager S, Kondarides D, Verykios X. Applied Catalysis B: Environmental, 2011, 103(3), 275.
76 Du J, Qu Z, Dong C, et al. Applied Surface Science, 2018, 433, 1025.
77 Zhang C, Guo Y, Guo Y, et al. Applied Catalysis B: Environmental, 2014, 148, 490.
78 Min X, Guo M, Li K, et al. Separation and Purification Technology, 2022, 295, 121316.
79 Luo Y, Lin D, Zheng Y, et al. Applied Surface Science, 2020, 504, 144481.
80 Aguilera D A, Perez A, Molina R, et al. Applied Catalysis B: Environmental, 2011, 104(1), 144.
81 Zhang Q, Liu X, Fan W, et al. Applied Catalysis B: Environmental, 2011, 102(1), 207.
82 Lu H, Kong X, Huang H, et al. Journal of Environmental Sciences, 2015, 32(006), 102.
83 Shan Y, Gao N, Chen Y, et al. Industrial & Engineering Chemistry Research, 2019, 58(36), 1452.
84 Qin Y, Wang Y, Li J, et al. Surfaces and Interfaces, 2020, 21, 100657.
85 Yang J, Li L, Yang X, et al. Catalysis Today, 2019, 327, 19.
86 Yang R, Han P, Fan Y, et al. Chemosphere, 2020, 247, 125864.
87 Doornkamp C, Ponec V. Journal of Molecular Catalysis A: Chemical, 2000, 162(1), 19.
88 Dong C, Wang H, Ren Y, et al. Surfaces and Interfaces, 2021, 22, 100897.
[1] 王振军, 阎凤凤, 张含笑, 梁晴陨. 乳化沥青与RAP再生界面融合特征研究进展[J]. 材料导报, 2023, 37(7): 21030199-10.
[2] 鲁浩, 杨强, 孔赟. 金属有机框架材料对水体中有机污染物的吸附去除及氧化降解研究进展[J]. 材料导报, 2023, 37(4): 22060239-13.
[3] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[4] 王凤姣, 白晓宇, 张云光, 井德胜, 张明义, 王海刚, 侯东帅. 不同材质抗浮锚杆与基础底板的黏结强度试验研究[J]. 材料导报, 2023, 37(22): 22050046-8.
[5] 陈飞, 李先延, 高家贵, 王永俊, 张林艳, 封基良. 基于IDEAL-CT试验评价后掺法温拌环氧沥青混合料抗裂性能[J]. 材料导报, 2023, 37(20): 22040288-7.
[6] 林博文, 徐亦冬, 余德密. MgAl-LDHs/TiO2复合光催化剂的制备及光催化性能[J]. 材料导报, 2023, 37(19): 22050098-6.
[7] 吴应雄, 郑新颜, 黄伟, 郑祥浴, 陈宝春. 超高性能混凝土-既有普通混凝土界面粘结性能研究综述[J]. 材料导报, 2023, 37(16): 21120057-11.
[8] 李洁. 多孔富缺陷半导体应用于光催化降解废水有机污染物[J]. 材料导报, 2023, 37(12): 21110143-9.
[9] 桂叶, 黄雪刚, 刘洋, 李博文, 谭春玲, 张峻源, 仇浩. 农林生物质热解过程中生成气溶胶的人体细胞毒性研究进展[J]. 材料导报, 2023, 37(10): 21090293-8.
[10] 王歧山, 何川, 陈旭. 金属工程材料腐蚀疲劳行为研究进展[J]. 材料导报, 2023, 37(1): 20100223-9.
[11] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[12] 林欢, 石启亮, 蔡利海, 刘文言, 李万利. 聚硼硅氧烷剪切增稠凝胶的制备影响因素及其在不同温度下的流变性能研究[J]. 材料导报, 2022, 36(Z1): 21070206-6.
[13] 王思弘, 宋钫. 金属氧化物电催化析氧机理的研究进展[J]. 材料导报, 2022, 36(23): 21030163-13.
[14] 初燕芳, 张琳, 谢彬, 严能, 何俊杰, 李靖. 高能球磨破碎铁掺杂δ-MnO2对其电容提升的机理研究[J]. 材料导报, 2022, 36(20): 22010246-7.
[15] 周志刚, 周扬, 刘智仁. 透水沥青混合料动态模量影响因素分析[J]. 材料导报, 2022, 36(13): 21010221-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed