Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 23030072-11    https://doi.org/10.11896/cldb.23030072
  高分子与聚合物基复合材料 |
等离子体改性增强农林生物质复合材料界面相容性研究进展
刘筱涵1,2, 杨培1,2, 周晓燕1,2,*
1 南京林业大学林业资源高效加工利用协同创新中心,南京 210037
2 南京林业大学材料科学与工程学院,南京 210037
Research Progress in Plasma Modification to Enhance Interfacial Compatibility of Agro-forestry Biomass Composites
LIU Xiaohan1,2, YANG Pei1,2, ZHOU Xiaoyan1,2,*
1 Collaborative Innovation Center for Efficient Processing and Utilization of Forestry Resources of Nanjing Forestry University, Nanjing 210037, China
2 School of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
下载:  全 文 ( PDF ) ( 24813KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 生物质复合材料的开发是促进生物质资源向高值化、多元化、环境化和功能化利用的重要方式,对此,生物质材料表面改性技术及其内在作用机制是当前生物质复合材料领域的主要研究内容。等离子体改性技术以速度快、能量高、功能强、污染小等优势从众多改性方法中脱颖而出,被广泛应用于改善生物质复合材料的界面结合性能。等离子体技术基于对材料表面的活化作用以及表面刻蚀作用改善生物质材料与其他异质材料的界面相容性,进而提升农林生物质复合材料的物理力学性能。本文介绍了等离子体改性生物质材料的发展历程,总结了等离子体技术对生物质材料的改性机理,重点阐述了等离子体改性技术在增强木竹/树脂复合材料、木竹/塑料复合材料、木竹/金属复合材料、木竹/增强纤维复合材料界面相容性方面的研究进展。最后,对等离子体改性农林生物质复合材料的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘筱涵
杨培
周晓燕
关键词:  等离子体  农林生物质  表面改性  界面相容性  复合材料    
Abstract: The development of biomass-based composites is an important way to promote biomass resources to high-value, diversified, environmental and functional utilization. To this end, surface modification techniques for biomass materials as well as the influence mechanisms are the main research focus for the development of biomass-based composites. Plasma modification technology stands out from many modification methods by the advantages of high speed, high energy, high functionality and low pollution, thus, this promising technology has been widely used to improve the interfacial bonding properties of biomass-based composites. Based on the surface activation and etching effect, Plasma technology can improve the interfacial compatibility of biomass materials with other materials with different chemical properties, resulting in the enhanced physical and mechanical properties of biomass-based composites. This paper introduced the development of plasma modification technology in producing biomass-based composites, and summarized the modification mechanism of plasma technology. This work focused on disscussing recent advancements in plasma modification technology to enhance the interfacial compatibility of different composites, including wood-bamboo/resin composites, wood-bamboo/plastic composites, wood-bamboo/metal composites, and wood-bamboo/reinforced fiber composites. In the end, the development direction of plasma-modified agro-forestry biomass-based composites is prospected.
Key words:  plasma    agro-forestry biomass    surface modification    interfacial compatibility    composite
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TB332  
基金资助: 国家重点研发计划(2021YFD2200602);国家自然科学基金(32271784; 32101460)
通讯作者:  *周晓燕,南京林业大学材料科学与工程学院二级教授、博士研究生导师。国家重点学科“木材科学与技术学科”带头人,教育部新世纪优秀人才、全国林业教学名师、中国林业青年科技奖获得者、江苏省有突出贡献的中青年专家。zhouxiaoyan@njfu.edu.cn   
作者简介:  刘筱涵,2021年6月于南京林业大学获得工学学士学位。现为南京林业大学材料科学工程硕博连读研究生,在周晓燕教授的指导下进行研究。目前主要研究方向为木质材料等离子体改性、生物质先进功能材料等。
引用本文:    
刘筱涵, 杨培, 周晓燕. 等离子体改性增强农林生物质复合材料界面相容性研究进展[J]. 材料导报, 2024, 38(13): 23030072-11.
LIU Xiaohan, YANG Pei, ZHOU Xiaoyan. Research Progress in Plasma Modification to Enhance Interfacial Compatibility of Agro-forestry Biomass Composites. Materials Reports, 2024, 38(13): 23030072-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030072  或          http://www.mater-rep.com/CN/Y2024/V38/I13/23030072
1 Guo W B, Qi W J, Wang Z P, et al. Journal of China Agricultural University, 2021, 26(1), 143 (in Chinese).
郭文斌, 齐文静, 王志鹏, 等. 中国农业大学学报, 2021, 26(1), 143.
2 Li X R, Peng H Z, Niu S H, et al. Forests, 2022, 13(5), 712.
3 Guo X. Jet plasma treatment and bonding of polyethylene wood plastic composites. Master's Thesis, Northeast Forestry University, China, 2019 (in Chinese).
郭笑. 聚乙烯木塑复合材料的射流等离子体处理与胶接. 硕士学位论文, 东北林业大学, 2019.
4 Yan S. Surface ageing of polyethylene wood plastic composites treated by jet plasma. Master's Thesis, Northeast Forestry University, China, 2019 (in Chinese).
闫霜. 射流等离子体处理聚乙烯木塑复合材料的表面时效性研究. 硕士学位论文, 东北林业大学, 2019.
5 Chen H Y. Effects of low temperature radio-frequency oxygen and nitrogen plasmas on lignocellulosic materials. Ph. D Thesis. University of California, USA, 1989.
6 Ao G, Li D D, Zhu Q Y, et al. Journal of Synthetic Crystals, 2022, 51(8), 1406 (in Cinese).
敖刚, 李冬东, 朱倩钰, 等. 人工晶体学报, 2022, 51(8), 1406.
7 Zhang C, Fu W, Hu S, et al. IEEE Transactions on Plasma Science, 2021, 9, 154318.
8 Du G B, Hua Y K, Wang Z. China Wood Industry, 1998, 12(6), 4 (in Chinese).
杜官本, 华毓坤, 王真. 木材工业, 1998, 12(6), 4.
9 Agnes R. Denes, Mandla A. Holzforschung, 1999, 53, 318.
10 Chen H Y, Zavarin E. Journal of Wood Chemistry and Technology, 1990, 10(3), 387.
11 Du G B, Yang Z, Qiu J. Scientia Silvae Sinicae, 2004(2), 148 (in Chinese).
杜官本, 杨忠, 邱坚. 林业科学, 2004(2), 148.
12 Du G B, Hua Y K, Wang Z. Scientia Silvae Sinicae, 1999, 35(2), 5 (in Chinese).
杜官本, 华毓坤, 王真. 林业科学, 1999, 35(2), 5.
13 Barun S, Gupta, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2007, 302(1-3), 388.
14 Mao H, Zhou D, Wang S, et al. In: Conference Record of International Conference on Advanced Engineering Materials and Technology. Sanya, 2015, pp.1632.
15 Li Y, Yang X H, Lu K Y, et al. Journal of Nanjing Forestry University, 2014, 38(5), 7 (in Chinese).
李洋, 杨雪慧, 陆凯悦, 等. 南京林业大学学报:自然科学版, 2014, 38(5), 7.
16 Zhang J H. Surface modification of rice straw with plasma technology. Ph. D. Thesis, Nanjing Forestry University, China, 2010 (in Chinese).
张建红. 等离子体技术调控稻秸表面的研究. 博士学位论文, 南京林业大学, 2010.
17 Liu Y, Tao Y, Lv X Y, et al. Applied Surface Science, 2010, 257(3), 1112.
18 Zhang R, Tang L J, Qian Y, et al. Forestry and Grassland Machinery, 2010, 21(4), 4 (in Chinese).
章蓉, 汤丽娟, 钱滢, 等. 木材加工机械, 2010, 21(4), 4.
19 Xu X W, Zhou D G. Journal of Nanjing Forestry University, 2009(5), 4 (in Chinese).
徐信武, 周定国. 南京林业大学学报:自然科学版, 2009(5), 4.
20 Chen G H, Xiang S L, Zhou L Y. Journal of Central South University of Forestry & Technology, 2010, 30(8), 4 (in Chinese).
陈桂华, 向仕龙, 周鲁英. 中南林业科技大学学报, 2010, 30(8), 4.
21 Mei C T, Zhou X B, Zhu K A, et al. Journal of Nanjing Forestry University, 2009(6), 5 (in Chinese).
梅长彤, 周绪斌, 朱坤安, 等. 南京林业大学学报:自然科学版, 2009(6), 5.
22 Radetić M, Marković D. Plasma Processes and Polymers, 2022, 19(4), 2100197.
23 Odraskova M, Rahel J, Zahoranova A, et al. Plasma Chem Plasma Process, 2008, 28(2), 203.
24 Kelar J,ech J, Slavíek P. Acta Polytechnica, 2015, 55(2), 109.
25 Wolkenhauer A, Avramidis G, Hauswald E. Journal of Adhesion Science and Technology: the International Journal of Theoredtical and Basic Aspects of Adhesion Science and Its Applications in All Areas of Technology, 2008, (16), 22.
26 Song C L, Zhang Z T, Zhao W G, et al. Chemical Reaction Engineering and Technology, 2010, 26(2), 112 (in Chinese).
宋春莲, 张芝涛, 赵文光, 等. 化学反应工程与工艺, 2010, 26(2), 112.
27 Tang L J, Zhang R, Zhou X Y. Journal of Nanjing Forestry University(Natural Sciences Edition) , 2011, 35(2), 4 (in Chinese).
汤丽娟, 章蓉, 周晓燕, 等. 南京林业大学学报:自然科学版, 2011, 35(2), 4.
28 Cao Y Z. Mechanism of low temperature plasma modified wood veneer to achieve high adhesive efficiency. Ph. D. Thesis, Nanjing Forestry University, China, 2020 (in Chinese).
曹倚中. 低温等离子体改性木质单板高效胶合机理研究. 博士学位论文, 南京林业大学, 2020.
29 Zhang R, Zhou X Y, Tang L J, et al. Forestry and Grassland Machinery, 2013, 40(4), 24 (in Chinese).
章蓉, 周晓燕, 汤丽娟, 等. 木材加工机械, 2013, 40(4), 24.
30 Tang L J. Research on mechanism of veneer surface properties and the interfacial adhesion of plywood by means of cold plasma treatment. Ph. D. Thesis, Nanjing Forestry University, China, 2015 (in Chinese).
汤丽娟. 冷等离子体改性对木质单板表界面作用机理的研究. 博士学位论文, 南京林业大学, 2015.
31 Chen M Z, Chen Y, Thiphuong N, et al. Journal of Forestry Engineering, 2017, 2(5), 9 (in Chinese).
陈敏智, 陈燕, Thiphuong N, 等. 林业工程学报, 2017, 2(5), 9.
32 Chen W M, Zhou X Y, Zhang X T, et al. Progress in Organic Coatings, 2018, 125, 128.
33 Nie Q Y. Experimental studies on atmospheric pressure cold plasma jets. Ph. D. Thesis, Dalian University of Technology, 2010 (in Chinese).
聂秋月. 大气压冷等离子体射流实验研究. 博士学位论文, 大连理工大学, 2010.
34 Wei Z, Yca B, Pei Y, et al. Composite Structures, 2019, 226(15), 111203.
35 Yang D, Wang H H, Zheng B C, et al. Plasma Sources Science & Technology, 2022, 31(11), 115002.
36 Islam R, Xie S, Lekobou W, et al. Journal of Thermoplastic Composite Materials, 2018, 31(7), 946.
37 Wang H Y. Study on bonding performance and construct of nanomaterial of bamboo and wood treated by cold plasma. Ph. D. Thesis, Nanjing Forestry University, China, 2013 (in Chinese).
王洪艳. 冷等离子体处理对木竹材胶合性能及纳米材料构筑的影响研究. 博士学位论文, 南京林业大学, 2013.
38 Sánchez M L, Aperador W A, Capote G. Industrial Crops and Products, 2018, 125, 33.
39 Du G B, Sun Z B, Huang L R. Journal of Nanjing Forestry University(Natural Sciences Edition), 2007, 31(4), 4 (in Chinese).
杜官本, 孙照斌, 黄林荣. 南京林业大学学报:自然科学版, 2007, 31(4), 4.
40 Hu F Z. Material surface and interface, East China University of Techno-logy Press, China, 2007, pp.169 (in Chinese).
胡福增. 材料表面与界面, 华东理工大学出版社, 2007, pp.169.
41 Jamali A, Evans P D. Journal of Wood Chemistry and Technology, 2022, 42(5), 381.
42 Richard Wascher, Florian Bittner, Georg Avramidis, et al. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105821.
43 Jean-Michel Hardy, Olivier Levasseur, Mirela Vlad, et al. Applied Surface Science, 2015, 359, 137.
44 Zhang W. Research on the plasma-modified fiber reinforced laminated veneer lumber. Master's Thesis, Nanjing Forestry University, China, 2020 (in Chinese).
张伟. 等离子体改性纤维增强单板层积材的研究, 硕士学位论文, 南京林业大学, 2020.
45 Wang D F. Study on the depolymerization properties and mechanisms of chitosan and cotton cellulose by discharge plasma. Master's Thesis, Northwest Agricultural and Forestry University, China, 2022 (in Chinese).
王丹凤. 放电等离子体对壳聚糖和棉纤维素解聚性能和机制的研究. 硕士学位论文, 西北农林科技大学, 2022.
46 Vanholme R, Demedts B B, Morreel K, et al. Plant Physiology, 2010, 153(3), 895.
47 Lai C H, Yang C D, Jia Y, et al. Bioresource Technology, 2022, 355, 127255.
48 Gabriela N Pereira, Karina Cesca, Anelise Leal Vieira Cubas, et al. Trends in Food Science & Technology, 2021, 109, 365.
49 Wu Z, Chen S, Liang J, et al. Journal of Renewable Materials, 2021, 011(9).
50 Altgen D, Avramidis G, Viöl W. Wood Science and Technology, 2016, 50(6), 2117.
51 Cao Y Z, Zhou X Y, Chen M Z, et al. Holzforschung, 2018, 72(12).
52 Gholamiyan H, Gholampoor B, Hosseinpourpia R. Materials, 2022, 15(1), 370.
53 Wascher R, Avramidis G, Viöl W. Forests, 2021, 12(10), 1423.
54 Peng X R, Zhang Z K. Scientia Silvae Sinicae, 2018, 54(1), 90 (in Chinese).
彭晓瑞, 张占宽. 林业科学, 2018, 54(1), 90.
55 Ruslan R Safin, Ruslan Khasanshin, Nour R Galyavetdinov, et al. Coatings, 2021, 11, 918.
56 Wolkenhauer A, Avramidis G, Hauswald E, et al. International Journal of Adhesion and Adhesives, 2009, 29(1), 18.
57 Klébert S, Mohai M, Csiszár E. Coatings, 2022, 12(4), 487.
58 Wu Q R, Guan X, Lin J G, et al. Journal of Southwest Forestry University(Natural Sciences Edition) , 2017, 37(4), 6 (in Chinese).
巫其荣, 关鑫, 林金国, 等. 西南林业大学学报:自然科学, 2017, 37(4), 6.
59 Zhou X Y. Study about the characteristic of bamboo surface and interface by the treatment of low temperature plasma. Master's Thesis, Nanjing Forestry University, China, 2008 (in Chinese).
周晓芸. 低温等离子体改性后竹材表界面特性的研究, 硕士学术论文, 南京林业大学, 2008.
60 Huang H L, Xue L D, Lu X N, et al. Journal of Nanjing Forestry University(Natural Sciences Edition), 2006, 30(6), 023 (in Chinese).
黄河浪, 薛丽丹, 卢晓宁, 等. 低温等离子体处理对竹片表面胶合性能的影响. 南京林业大学学报(自然科学版), 2006, 30(6), 023.
61 Wang X, Cheng K J. Forests, 2020, 11(12), 1293.
62 Wu J, Yuan H, Wang W, et al. Construction and Building Materials, 2020, 269(4), 121269.
63 Rao J, Bao L, Wang B, et al. Composites Part B: Engineering, 2018, 138, 157.
64 Ai J. Study on characters of wheat straw fiber and technology of UFI wheat straw fiber board. Ph. D. Thesis, Northeast Forestry University , China, 2001 (in Chinese).
艾军. 麦秆纤维特性及脲醛树脂麦秆纤维板工艺的研究, 博士学位论文, 东北林业大学, 2001.
65 Yang K Y. Preparation and properties of typical biomass-polyethylene composites. Master's Thesis, Shandong University of Technology, China, 2016 (in Chinese).
杨科研. 典型生物质/聚乙烯复合材料制备与性能研究. 硕士学位论文, 山东理工大学, 2016.
66 Neasová B, Liška P, Kelar J, et al. Polymers, 2019, 11(3), 397.
67 Zhou X Y, Cao Y Z, Yang K, et al. Journal of Cleaner Production, 2020, 269, 122.
68 Tao Y. Study on durability of bonding joint for plasma treated wood/pol-yethylene composites. Master's Thesis, Northeast Forestry University, China, 2012 (in Chinese).
陶岩. 等离子体表面处理木粉/聚乙烯复合材料胶接接头的耐久性研究. 硕士学位论文, 东北林业大学, 2012.
69 Benedikt Hünnekens, Frauke Peters, Georg Avramidis, et al. Journal of Applied Polymer Science, 2016, 133(18), 43376.
70 Tang W B, Xie Z K, Wu E Q, et al. Guangdong Chemical Industry, 2020, 47(7), 3 (in Chinese).
唐文斌, 谢志昆, 伍二强, 等. 广东化工, 2020, 47(7), 3.
71 Yan S, Shang X Y, Di M W. Chemistry and Adhesion, 2019, 41(1), 5 (in Chinese).
闫霜, 尚欣宇, 邸明伟. 化学与粘合, 2019, 41(1), 5.
72 Shi S K, Cai X, Zhou X Y, et al. Journal of Nanjing Forestry University ( Natural Sciences Edition) , 2016, 40(5), 5 (in Chinese).
史书凯, 蔡欣, 周晓燕, 等. 南京林业大学学报:自然科学版, 2016, 40(5), 5.
73 Wallenhorst L, Gurău L, Gellerich A, et al. Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials, 2018, 434, 1183.
74 Jnido G, Ohms G, Viöl W. Coatings, 2021, 11(2), 183.
75 Jnido G, Ohms G, Viöl W. Coatings. 2019, 9(7), 441.
76 Dahle S, Srinivasa K, Žigon J, et al. Frontiers in Materials, 2022, 8, 796474.
77 Gascón-Garrido P, Thévenon M, Mainusch N, et al. International Biodeterioration & Biodegradation, 2017, 120, 84.
78 Wang H Y, Li Q, Yi S F, et al. Journal of Northwest A & F University(Nat. SCI. Ed), 2019, 47(9), 8 (in Chinese).
王洪艳, 李菁, 逸邵飞. 西北农林科技大学学报:自然科学版, 2019, 47(9), 8.
79 Wang H Y, Du G B, Zheng R B. Journal of Central South University of Forestry & Technology, 2014, 34(3), 117 (in Chinese).
王洪艳, 杜官本, 郑荣波. 中南林业科技大学学报, 2014, 34(3), 117.
80 Vignesh K, Vijayalakshmi K A, Karthikeyan N. Surface Review and Letters, 2017, 24(3), 1750032.
81 Dionmbete G, Miloh N, Tarkwa J B, et al. Biomass Conv Bioref, DOI: https://doi. org/10. 1007/s13399-023-04246-1.
82 Shen G L, Hu G K. Mechanics of composite materials, Tsinghua University Press, China, 2006, pp.16 (in Chinese).
沈观林, 胡更开. 复合材料力学, 清华大学出版社. 2006, pp.16.
83 Zhang W, Cao Y Z, Yang P, et al. Composite Structures, 2019, 226(15), 111203.
84 Zhang J, Study on modification of carbon fiber and properties of its composites. Master's Thesis, Tianjin Polytechnic University, China, 2016 (in Chinese).
张杰. 碳纤维改性及其复合材料性能研究, 硕士学位论文, 天津工业大学, 2016.
85 Liu X D, Wu L, Kong L, et al. Journal of Shang Hai Jiao Tong University, 2019, 53(8), 7 (in Chinese).
刘晓东, 吴磊, 孔谅, 等. 上海交通大学学报, 2019, 53(8), 7.
86 Oporto G S, Gardner D J, Bernhardt G, et al. Composite Interfaces, 2009, 16(7), 847.
[1] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[6] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[7] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[8] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[9] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[10] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[11] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[12] 陈悦, 黄静, 朱子旭, 李华东. 面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析[J]. 材料导报, 2024, 38(5): 23070044-6.
[13] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[14] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[15] 贾宝惠, 任鹏, 宋挺, 崔开心, 肖海建. 湿热环境下端径比对复合材料螺栓连接结构静力拉伸失效的影响[J]. 材料导报, 2024, 38(5): 22100282-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed