Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 22100042-13    https://doi.org/10.11896/cldb.22100042
  无机非金属及其复合材料 |
再生微粉性能激活研究及应用进展
马昆林1,*, 孟维琦1, 申景涛2, 胡明文2, 王晓杰2, 龙广成1, 曾晓辉1
1 中南大学土木工程学院,长沙 410075
2 中铁城建集团有限公司,长沙 410208
Advances in Research of Performance Activation of Recycled Powders and Relevant Applications
MA Kunlin1,*, MENG Weiqi1, SHEN Jingtao2, HU Mingwen2, WANG Xiaojie2, LONG Guangcheng1, ZENG Xiaohui1
1 School of Civil Engineering, Central South University, Changsha 410075, China
2 China Railway Urban Construction Group Co., Ltd., Changsha 410208, China
下载:  全 文 ( PDF ) ( 21757KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 再生微粉是以混凝土、砖瓦等为主要成分的建筑垃圾制备再生骨料过程中产生的粒径小于75 μm的颗粒,其主要化学组成与粉煤灰类似,具有一定的潜在活性。将再生微粉作为掺合料使用,可减少对原材料的需求,减轻对环境的污染,实现资源的循环利用。
再生微粉具有组成复杂、需水量大、活性指数低等特点,直接作为掺合料使用不利于砂浆或混凝土的性能,但再生微粉中SiO2、CaO和Al2O3含量均较高,具有较好的活性潜质,经过适当的技术处理后可以有效激发其活性,提高利用效率。目前再生微粉主要激活方式有物理激活、化学激活和热激活。热激活可以燃尽再生微粉中的有机物杂质,改变部分物质组成,从而激发其活性;物理激活通过机械力增大了再生微粉的比表面积,从而提高了再生微粉活性;化学激活主要通过加入碱性激发剂等提供碱性环境或提供可参与反应的离子,从而促进水化程度提高再生微粉活性。相关学者对再生微粉的活性激发方法及其在砂浆和混凝土中的应用进行了深入研究,这对再生微粉的应用具有积极作用。
本文基于已有文献资料,对再生微粉的物理性能、化学组成、激活方式、激活机理及应用现状进行了综合评述,分析了目前再生微粉研究存在的问题并展望了其应用前景,以期为再生微粉的高品质利用提供研究基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马昆林
孟维琦
申景涛
胡明文
王晓杰
龙广成
曾晓辉
关键词:  建筑垃圾  再生微粉  激活方式  作用机理  应用现状    
Abstract: Recycled fine powders area kind of particles with particle size less than 75 μm produced in the process of preparing recycled aggregate from construction waste with concrete, brick and tile as the main components. Their main chemical composition is similar to that of fly ash and has certain potential activity. The use of recycled fine powders as admixture can reduce the demand for raw materials, reduce the pollution to the environment, and realize the recycling of resources.
Recycled fine powders have the characteristics of complex composition, large water demand and low activity index, which are not conducive to the performance of mortar or concrete when used directly as admixture. However, the content of SiO2, CaO and Al2O3 in recycled fine powders are high, which have a good activity potential. After appropriate technical treatment, it can effectively stimulate their activities and improve the utilization efficiency. The main activation modes of recycled fine powders currently include physical, chemical, and thermal activation. Thermal activation can burn up the organic impurities in the recycled fine powders, and change the composition of some substances, so as to stimulate their activity. Physical activation increases the specific surface area of recycled fine powders by mechanical force, thereby improving the activity of the recycled fine powders. Chemical activation mainly provides an alkaline environment or ions that can participate in the reaction by adding alkaline activators, thus promoting the hydration degree to improve the activity of recycled fine powders. Relevant scholars have conducted in-depth research on the active excitation method of recycled fine powders and its application in mortar and concrete, which has played a positive role in the application of recycled fine powders.
Based on the existing literature, this paper comprehensively reviews the physical properties, chemical composition, activation mode, activation mechanism and application status of recycled fine powders, analyses the problems in the current research of recycled fine powders and looks forward to their application prospect, in order to provide a research basis for the high-quality utilization of recycled fine powders.
Key words:  construction waste    recycled fine powders    activation mode    mechanism of action    application status
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TU526  
基金资助: 长沙市科技计划重点研发项目(kh2005213)
通讯作者:  *马昆林,中南大学土木工程学院教授。1999年中南大学建筑工程专业本科毕业,2005年中南大学土木工程专业硕士毕业,2009年中南大学道路与铁道工程专业博士毕业。目前主要从事海绵城市、路面结构设计及损伤理论、固废资源化利用、高性能混凝土技术及高速铁路无砟轨道方面的研究和工程应用。近年来主持和参加国家自科基金重大项目、高铁联合基金、“973”和科技部重点研发项目等纵横向科研项目30余项,发表学术论文100余篇,获省部级以上科研奖励6项,获专利授权10项,主编教材3部,出版专著1部,作为主要起草人编制规范4部。makunlin@csu.edu.cn   
引用本文:    
马昆林, 孟维琦, 申景涛, 胡明文, 王晓杰, 龙广成, 曾晓辉. 再生微粉性能激活研究及应用进展[J]. 材料导报, 2024, 38(10): 22100042-13.
MA Kunlin, MENG Weiqi, SHEN Jingtao, HU Mingwen, WANG Xiaojie, LONG Guangcheng, ZENG Xiaohui. Advances in Research of Performance Activation of Recycled Powders and Relevant Applications. Materials Reports, 2024, 38(10): 22100042-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100042  或          http://www.mater-rep.com/CN/Y2024/V38/I10/22100042
1 Liu C, Yao Y Z, Liu H W, et al. Journal of Building Materials, 2022, 25(11), 1128 (in Chinese).
刘超, 姚羿舟, 刘化威, 等. 建筑材料学报, 2022, 25(11), 1128.
2 Huang W L, Zhang X Q, Han Q X. New Building Materials, 2017, 44(9), 122 (in Chinese).
黄巍林, 张修勤, 韩清雪. 新型建筑材料, 2017, 44(9), 122.
3 Zhu P, Mao X Q, Qu W J. Magazine of Concrete Research, 2019, 71(24), 1312.
4 Shao J H, Gao J M, Zhao Y S, et al. Construction and Building Materials, 2019, 213, 209.
5 Li S J, Zhao X L, Li Q Y, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(10), 3314 (in Chinese).
李述俊, 赵霄龙, 李秋义, 等. 硅酸盐通报, 2019, 38(10), 3314.
6 Tian Q, Qu M J, Zhang M, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(8), 2476 (in Chinese).
田青, 屈孟娇, 张苗, 等. 硅酸盐通报, 2020, 39(8), 2476.
7 Zhou C S, Ji H B, Zhao L Y. Bulletin of the Chinese Ceramic Society, 2019, 38(8), 2456 (in Chinese).
周长顺, 吉红波, 赵丽颖. 硅酸盐通报, 2019, 38(8), 2456.
8 Lan C, Lu J L, Chen J, et al. MATEC Web of Conferences, 2019, 278, 1010.
9 Liu D, Zhang P Y, Liu T, et al. Bulletin of the Chinese Ceramic Society, 2016, 35(8), 2635 (in Chinese).
刘栋, 张鹏宇, 刘彤, 等. 硅酸盐通报, 2016, 35(8), 2635.
10 Kang X M, Li Y, Fan Y H. Bulletin of the Chinese Ceramic Society, 2019, 38(4), 1135 (in Chinese).
康晓明, 李滢, 樊耀虎. 硅酸盐通报, 2019, 38(4), 1135.
11 Li Y, Kang X M. IOP Conference Series: Earth and Environmental Science, 2019, 219(1), 12025.
12 Yu X X, Li R Y, Dong X, et al. Journal of Synthetic Crystals, 2017, 46(4), 688 (in Chinese).
余小小, 李如燕, 董祥, 等. 人工晶体学报, 2017, 46(4), 688.
13 Lyu X Y, Wang L S, Chen X, et al. Journal of Qingdao University of Technology, 2009, 30(4), 137 (in Chinese).
吕雪源, 王乐生, 陈雪, 等. 青岛理工大学学报, 2009, 30(4), 137.
14 Li Q, Zhang C H, Sun K W. Bulletin of the Chinese Ceramic Society, 2016, 35(7), 2187 (in Chinese).
李琴, 张春红, 孙可伟. 硅酸盐通报, 2016, 35(7), 2187.
15 Wang H J, Geng O, Zhao G Y. Concrete, 2015(8), 74 (in Chinese).
王海进, 耿欧, 赵桂云. 混凝土, 2015(8), 74.
16 Wang Z X. Research & Application of Building Materials, 2021(2), 4 (in Chinese).
王朝霞. 建材技术与应用, 2021(2), 4.
17 中华人民共和国住房和城乡建设部. JG/T 573-2020, 混凝土和砂浆用再生微粉, 中国标准出版社, 2020, pp.1.
18 Schackow A, Stringari D, Senff L, et al. Cement and Concrete Compo-sites, 2015, 62, 82.
19 Chen M Z, Lin J T, Wu S P, et al. Construction and Building Materials, 2011, 25(4), 1532.
20 Liu Q, Tong T, Liu S H, et al. Construction and Building Materials, 2014, 73, 754.
21 Zhao L. Study on basic properties and application of recycled fine powder from construction waste. Master’s Thesis, Beijing University of Civil Engineering and Architecture, China, 2019 (in Chinese).
赵磊. 建筑垃圾再生微粉基本性能及应用研究. 硕士学位论文, 北京建筑大学, 2019.
22 Qiang C. Study on the properties of fully recycled concrete prepared from recycled fine powder-recycled aggregate. Master’s Thesis, Shaoxing University, China, 2021 (in Chinese).
强驰. 再生微粉-再生骨料制备全再生混凝土的试验研究. 硕士学位论文, 绍兴文理学院, 2021.
23 Zhou W J, Xie Q, Zhao L. Materials Reports, 2020, 34(z1), 246 (in Chinese).
周文娟, 谢谦, 赵磊. 材料导报, 2020, 34(Z1), 246.
24 Yu L F. New Building Materials, 2017, 44(7), 108 (in Chinese).
於林锋. 新型建筑材料, 2017, 44(7), 108.
25 Ma Y. China Concrete and Cement Products, 2016(10), 88 (in Chinese).
马郁. 混凝土与水泥制品, 2016(10), 88.
26 Qiang C, Gao Y Q, Liang C F, et al. China Concrete and Cement Pro-ducts, 2020(7), 92 (in Chinese)
强驰, 高越青, 梁超锋, 等. 混凝土与水泥制品, 2020(7), 92.
27 Yuan C F, Chen Y, Wang S B, et al. Journal of Zhengzhou University (Engineering Science), 2022, 43(6), 97 (in Chinese).
元成方, 陈阳, 王世博, 等. 郑州大学学报(工学版), 2022, 43(6), 97.
28 Tian Y. Study on basic mechanical properties of the activated recycled brick ECC. Master’s Thesis, Zhengzhou University, China, 2021 (in Chinese).
田野. 活性激发后再生砖粉ECC基本力学性能研究. 硕士学位论文, 郑州大学, 2021.
29 Wei Y R. Experimental study on basic mechanical properties and mix design of ultra-high performance concrete prepared by recycled fine powder. Master’s Thesis, Zhengzhou University, China, 2021 (in Chinese).
魏逸然. 再生微粉UHPC配合比设计与基本力学性能试验研究. 硕士学位论文, 郑州大学, 2021.
30 Sun L R. Research on properties of recycled fine powder and its effects to recycled products. Master’s Thesis, Beijing University of Civil Enginee-ring and Architecture, China, 2012 (in Chinese).
孙丽蕊. 再生微粉材性及其对再生制品影响的研究. 硕士学位论文, 北京建筑工程学院, 2012.
31 Chen X, Li Q Y, Yang X N, et al. Journal of Qingdao Technological University, 2013, 34(3), 17 (in Chinese).
陈雪, 李秋义, 杨向宁, 等. 青岛理工大学学报, 2013, 34(3), 17.
32 Liu L, Liu X Y, Li T Y, et al. Concrete, 2021(7), 114 (in Chinese).
刘力, 刘小艳, 李田雨, 等. 混凝土, 2021(7), 114.
33 He C F, Dong H H, Li X B, et al. Concrete, 2021(12), 117 (in Chinese).
何春锋, 董焕焕, 李晓宝, 等. 混凝土, 2021(12), 117.
34 Zhang P, Gu L L, Wang Q, et al. China Concrete and Cement Products, 2019(2), 90 (in Chinese)
张平, 古龙龙, 王琴, 等. 混凝土与水泥制品, 2019(2), 90.
35 Zhao G Y. Basic properties and activation technology of the recycled concrete powder. Master’s Thesis, China University of Mining and Techno-logy, China, 2014 (in Chinese).
赵桂云. 混凝土再生微粉基本性能及其活化技术. 硕士学位论文, 中国矿业大学, 2014.
36 Yang L. Investigation on recycled cementitious materials preparing with recycled concrete powder. Master’s Thesis, Southeast University, China, 2016 (in Chinese).
杨琳. 再生混凝土微粉制备再生胶凝材料的研究. 硕士学位论文, 东南大学, 2016.
37 Zhang X Q, Li Q Y, Yue G B, et al. Concrete, 2015(8), 120 (in Chinese).
张修勤, 李秋义, 岳公冰, 等. 混凝土, 2015(8), 120.
38 Fan Y H, Li Y, Kang X M. Bulletin of the Chinese Ceramic Society, 2019, 38(2), 537 (in Chinese)
樊耀虎, 李滢, 康晓明. 硅酸盐通报, 2019, 38(2), 537.
39 Ge X. Recycled clay brick micro-powder activity excitation and its application in foamed concrete. Master’s Thesis, Shenyang Jianzhu University, China, 2021 (in Chinese).
葛星. 再生粘土砖微粉活性激发及其在泡沫混凝土中的应用研究. 硕士学位论文, 沈阳建筑大学, 2021.
40 Luo H T. Regenerated silicate material using waste concrete-clay brick by hydrothermal synthesis. Master’s Thesis, Dalian University of Technology, China, 2020 (in Chinese).
罗海涛. 废弃混凝土-废砖水热合成再生硅酸盐材料. 硕士学位论文, 大连理工大学, 2020.
41 Kwon E, Ahn J, Cho B, et al. Construction and Building Materials, 2015, 83, 174.
42 Lou C, Zheng C C, Li X Z, et al. Industrial Construction, 2019, 49(10), 151 (in Chinese).
楼聪, 郑朝灿, 李晓珍, 等. 工业建筑, 2019, 49(10), 151.
43 Zhou W J, Ji Z Y, Zhao L, et al. China Concrete and Cement Products, 2019(3), 93 (in Chinese).
周文娟, 季志远, 赵磊, 等. 混凝土与水泥制品, 2019(3), 93.
44 Li S J. Experimental on the resource reutilization of recycled fine powder. Master’s Thesis, Qingdao University of Technology, China, 2019 (in Chinese).
李述俊. 再生微粉的资源化再利用试验研究. 硕士学位论文, 青岛理工大学, 2019.
45 中华人民共和国国家质量监督检验检疫总局中国国家标准化管理委员会. GB/T 1596-2017, 用于水泥和混凝土中的粉煤灰,中国标准出版社, 2017, pp.1.
46 Hou S M, Gao S, Zhang L, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(5), 1573 (in Chinese).
侯双明, 高嵩, 张蕾, 等. 硅酸盐通报, 2020, 39(5), 1573.
47 Gao Q Y, Wang Z H. Journal of Wuhan University of Technology, 1991(1), 25 (in Chinese).
高琼英, 王志宏. 武汉工业大学学报, 1991(1), 25.
48 Zheng F Y. Study on the process engineering of cement-concrete material. Ph. D. Thesis, Dalian University of Technology, China, 2006 (in Chinese).
郑芳宇. 水泥混凝土材料过程工程学研究. 博士学位论文, 大连理工大学, 2006.
49 Florea M V A, Ning Z, Brouwers H J H. Construction and Building Materials, 2014, 50, 1.
50 Li Q Y, Xu Q, Ai W B. IOP Conference Series: Earth and Environmental Science, 2020, 512(1), 12056.
51 Wang M T, Li M, Liu Z G, et al. China Powder Science and Technology, 2008, 14(3), 46 (in Chinese).
王觅堂, 李梅, 柳召刚, 等. 中国粉体技术, 2008, 14(3), 46.
52 Liu Y L, Zhu W C, Zou Z Y, et al. China Powder Science and Technology, 2020, 26(6), 45 (in Chinese).
刘英莉, 朱文超, 邹志云, 等. 中国粉体技术, 2020, 26(6), 45.
53 Feng Q G, Zhang X L, Li H X. Bulletin of the Chinese Ceramic Society, 2016, 35(5), 1475 (in Chinese).
冯庆革, 张小利, 李浩璇. 硅酸盐通报, 2016, 35(5), 1475.
54 Tao Z D, Zhang Y, Yang Z X, et al. Cement Engineering, 2004(4), 21 (in Chinese).
陶珍东, 张颖, 杨中喜, 等. 水泥工程, 2004(4), 21.
55 Shi Y, Yang S S, Lian Y M. Brick-Tile, 2017(4), 47 (in Chinese).
石莹, 杨善顺, 连亚明. 砖瓦, 2017(4), 47.
56 Dong Z X. Production of geopolymer-based recycled materials from waste concrete by alkali-activation. Master’s Thesis, Dalian University of Technology, China, 2018 (in Chinese).
董自修. 碱激发制备废弃混凝土地聚物基再生材料. 硕士学位论文, 大连理工大学, 2018.
57 Liu R T. Experimental study on the construction waste clay brick powder as active admixture. Master’s Thesis, Xi’an University of Architecture and Technology, China, 2017 (in Chinese).
刘荣涛. 建筑废弃黏土砖粉作活性掺合料试验研究. 硕士学位论文, 西安建筑科技大学, 2017.
58 Xu R L. Activation and application of construction waste powders. Master’s Thesis, Wuhan University of Technology, China, 2011 (in Chinese).
徐如林. 建筑垃圾粉料的活性激发及其应用. 硕士学位论文, 武汉理工大学, 2011.
59 Liu C. Research on preparation and application of alkali activated recycled concrete powder cementitious material. Master’s Thesis, Yangzhou University, China, 2021 (in Chinese).
刘聪. 碱激发再生微粉胶凝材料制备及其应用研究. 硕士学位论文, 扬州大学, 2021.
60 Fang J L, Lu W X, Xu C X. Journal of Shanghai University (Natural Science Edition), 2002, 8(3), 255 (in Chinese).
方军良, 陆文雄, 徐彩宣. 上海大学学报(自然科学版), 2002, 8(3), 255.
61 Lyu X Y. Foundational properties and applications on recycled powder. Master’s Thesis, Qingdao University of Technology, China, 2009 (in Chinese).
吕雪源. 再生微粉的基本性能及应用. 硕士学位论文, 青岛理工大学, 2009.
62 Zhu Y L, Zou W X, Yin M, et al. Journal of Guangxi University (Natural Science Edition), 2016, 41(4), 1214 (in Chinese).
朱有禄, 邹卫雄, 殷明, 等. 广西大学学报(自然科学版), 2016, 41(4), 1214.
63 Kang X M, Li Y. IOP Conference Series: Earth and Environmental Science, 2019, 219(1), 12026.
64 Huang X L, Bian Z H, Huang S L, et al. Concrete, 2017(8), 128 (in Chinese).
黄修林, 卞周宏, 黄绍龙, 等. 混凝土, 2017(8), 128.
65 Liu C, Hu T F, Liu H W, et al. Journal of Building Materials, 2021, 24(4), 726 (in Chinese).
刘超, 胡天峰, 刘化威, 等. 建筑材料学报, 2021, 24(4), 726.
[1] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[2] 庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
[3] 李贞, 刘加平, 乔敏, 于诚, 谢惟肖, 陈俊松. 基于减水剂吸附行为的再生微粉-水泥浆体黏度调控机理研究[J]. 材料导报, 2023, 37(8): 21090090-7.
[4] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[5] 万小梅, 车雪萍, 朱亚光, 于琦, 江璐璐. 再生混凝土微粉在碱激发胶材体系中的作用效应研究[J]. 材料导报, 2023, 37(19): 22020043-7.
[6] 马昆林, 刘建, 申景涛, 胡明文, 王晓杰, 龙广成, 曾晓辉. 砖混再生粗骨料及其在混凝土中的研究与应用进展[J]. 材料导报, 2023, 37(18): 22010215-12.
[7] 林一柯, 何廷树, 达永琪. 自磨改性对再生粗骨料及再生混凝土性能的影响[J]. 材料导报, 2023, 37(16): 22020144-6.
[8] 肖建庄, 叶涛华, 隋同波, 潘智生. 废弃混凝土再生微粉的基本问题及应用[J]. 材料导报, 2023, 37(10): 22120116-10.
[9] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[10] 冯春花, 黄益宏, 崔卜文, 朱建平, 李东旭, 郭晖. 建筑再生骨料强化方法研究进展[J]. 材料导报, 2022, 36(21): 20080099-8.
[11] 乔敏, 单广程, 高南箫, 陈健, 吴井志, 朱伯淞, 冉千平. 混凝土气泡调控型表面活性剂的研究进展[J]. 材料导报, 2022, 36(18): 20090232-7.
[12] 彭晶晶, 刘静, 张弦, 成林, 吴开明, 张涛. 合金元素在Al基牺牲阳极中的作用机理[J]. 材料导报, 2022, 36(17): 20090294-8.
[13] 惠冰, 李扬, 张炎棣, 杨心怡. 水性环氧乳化沥青固化-破乳速率调控效能及作用机理[J]. 材料导报, 2022, 36(16): 22050008-6.
[14] 郑伟豪, 何娟, 伍勇华, 宋学锋, 桑国臣. 活性MgO对碱矿渣水泥收缩性能的影响[J]. 材料导报, 2022, 36(10): 21040175-8.
[15] 王一名, 常立君, 李滢. 废弃混凝土再生微粉固化盐渍土的强度特性及微观机理研究[J]. 材料导报, 2021, 35(z2): 268-274.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed