Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21090124-8    https://doi.org/10.11896/cldb.21090124
  金属与金属基复合材料 |
激光熔化沉积稀释率对重熔行为与致密度的影响
段成红1,2, 池瀚林1, 罗翔鹏1,*, 宫鹏杰1
1 北京化工大学机电工程学院,北京 100029
2 北京化工大学化工设备设计研究所,北京 100029
Effects of Dilution Rate of Laser Melting Deposition on Remelting Behaviors and Density
DUAN Chenghong1,2, CHI Hanlin1, LUO Xiangpeng1,*, GONG Pengjie1
1 College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
2 Chemical Equipment Design Institute, Beijing University of Chemical Technology, Beijing 100029, China
下载:  全 文 ( PDF ) ( 13926KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于激光熔化沉积(Laser melting deposition, LMD)制造的零件存在气孔、熔合不良、微裂纹、杂质等固有缺陷,其疲劳力学性能一般低于传统工艺制造的零件。为了减少LMD零件中的缺陷,研究激光熔化沉积过程中缺陷形成与控制机理是十分必要的。本研究利用三维有限元模拟结合显微观察法分析阐明了激光熔化沉积过程中单道稀释率对重熔行为与沉积零件致密度的影响。首先测量了不同工艺参数下LMD零件的致密度,建立了单道沉积面能量密度与零件致密度的拟合曲线;然后研究了工艺参数对单道沉积几何特征的影响规律,以及单道沉积稀释率对零件沉积过程中重熔行为的影响;最后建立了单道沉积稀释率与零件致密度的拟合曲线,并发现其拟合度更高。本研究对激光熔化沉积过程中零件致密度控制具有一定的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
段成红
池瀚林
罗翔鹏
宫鹏杰
关键词:  致密度  激光熔化沉积(LMD)  稀释率  重熔行为    
Abstract: The fatigue properties of the laser melting deposition (LMD) parts is generally inferior to those made by traditional technologies due to the inherent defects of parts fabricated by the LMD, such as porosity, lack of fusion, microcracks and impurities. In order to alleviate the defects in the LMD parts, it is necessary to study the formation and control mechanism of the defects induced by the LMD process. In this study, the effects of single-track dilution rate on the remelting behaviors and density of the deposited parts were analyzed by the 3D finite element simulation and microscopic investigation. Firstly, the density of the LMD parts fabricated by different process parameters was measured, and the fitting curve between the surface energy density of the single-track deposition and the density of the LMD parts was established. Then the effects of process parameters on the geometric characteristics of the single-track deposition and the effects of dilution rate of the single-track deposition on the remelting behaviors of parts were studied. Finally, the fitting curve between the dilution rate of the single-track deposition and the density of the LMD parts was established and its fitting degree was higher. This research has a certain guiding significance for the density control of parts in the LMD process.
Key words:  density    laser melting deposition (LMD)    dilution    remelting behavior
发布日期:  2023-03-27
ZTFLH:  TG142  
基金资助: 国家重点研发计划(2016YFB1100202-1)
通讯作者:  *罗翔鹏,北京化工大学讲师,2009年6月至2017年3月,获得北京化工大学过程装备与控制工程专业学士学位和浙江大学化工过程机械专业博士学位,毕业后返回北京化工大学任教。近3年来以第一作者或通讯作者身份发表学术论文20余篇,其中SCI/EI 10多篇。主要研究方向为激光应用技术和承压装备及管道设计与分析。xpluo@mail.buct.edu.cn   
作者简介:  段成红,北京化工大学教授、博士研究生导师,1986年本科毕业于北京化工大学,1999年于北京化工大学获得硕士学位,并留校至今。2004—2005年到美国俄亥俄州立大学进行访问、合作研究,2007年获得北京化工大学化工过程机械博士学位。在国内外期刊上发表论文70余篇,其中一半以上被SCI/EI收录。主要研究领域有增材制造与激光制造应用、过程装备设计开发和结构优化。近10年来负责完成科研项目20多项以及多项企事业单位委托项目等。
引用本文:    
段成红, 池瀚林, 罗翔鹏, 宫鹏杰. 激光熔化沉积稀释率对重熔行为与致密度的影响[J]. 材料导报, 2023, 37(6): 21090124-8.
DUAN Chenghong, CHI Hanlin, LUO Xiangpeng, GONG Pengjie. Effects of Dilution Rate of Laser Melting Deposition on Remelting Behaviors and Density. Materials Reports, 2023, 37(6): 21090124-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090124  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21090124
1 Chai P T. Microstructural evolutions of V-5Cr-5Ti alloy and 316L stainless steel prepared by laser melting deposition technique. Master's Thesis, China Academy of Engineering Physics, China, 2020 (in Chinese).
柴鹏涛. 激光熔化沉积钒合金及316L不锈钢的微观组织调控研究. 硕士学位论文, 中国工程物理研究院, 2020.
2 Lin X, Yang H O, Chen J, et al. Acta Metallurgica Sinica, 2006, 42(4), 361 (in Chinese).
林鑫, 杨海欧, 陈静, 等. 金属学报, 2006, 42(4), 361.
3 Yi H J. Research on forming technology and performance of additive manufacturing 316L stainless steel. Master's Thesis, North China University of Technology, China, 2020 (in Chinese).
易海佳. 增材制造316L不锈钢成型工艺及性能研究. 硕士学位论文, 北方工业大学, 2020.
4 Mahmoudi M, Elwany A, Yadollahi A, et al. Rapid Prototyping Journal, 2017, 23(2), 280.
5 Tang M, Chris P P. International Journal of Fatigue, 2017, 94, 192.
6 Pessard E, Lavialle M, Laheurte P, et al. International Journal of Fatigue, 2021, 149(3), 106206.
7 Wolff S J, Wang H, Gould B, et al. International Journal of Machine Tools and Manufacture, 2021, 166, 103743.
8 Zheng B, Haley J C, Yang N, et al. Materials Science and Engineering: A, 2019, 764, 138243.
9 Miao P, Niu F Y, Ma G Y, et al. Opto-Electronic Engineering, 2017, 44(4), 410 (in Chinese).
苗佩, 牛方勇, 马广义, 等. 光电工程, 2017, 44(4), 410.
10 Li J F, Wei Z Y, Yang L X, et al. Optik, 2020, 207, 163760.
11 Larimian T, Kannan M, Grzesiak D, et al. Materials Science and Engineering: A, 2020, 770, 138455.
12 Seede R, Shoukr D, Zhang B, et al. Acta Materialia, 2020, 186, 199.
13 AlMangour B, Grzesiak D, Borkar T, et al. Materials and Design, 2018, 138, 119.
14 Ren B, Lu D, Zhou R, et al. Journal of Materials Research, 2019, 34(8), 1415.
15 Tapoglou N, Clulow J. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2021, 235(10), 1633.
16 Reddy L, Preston S P, Shipway P H, et al. Surface and Coatings Technology, 2018, 349, 198.
17 Yadollahi A, Shamsaei N, Scott M, et al. Materials Science and Engineering A, 2015, 644, 171.
18 Antony K, Arivazhagan N, Senthilkumaran K. Journal of Manufacturing Processes, 2014, 16(3), 345.
19 Luo M X. Numerical simulation of thermal-mechanical behavior during laser cladding 316L stainless steel powder. Master's Thesis, Yanshan University, China, 2011 (in Chinese).
罗明贤. 316L不锈钢粉末激光熔覆工艺热-力耦合数值模拟. 硕士学位论文, 燕山大学, 2011.
20 Zhao H L. Numerical simulation of temperature field and flow field during laser cladding of molten pool. Master's Thesis, Yanshan University, China, 2013 (in Chinese).
赵海玲. 激光熔覆熔池温度场和流场的数值模拟. 硕士学位论文, 燕山大学, 2013.
21 Luo C, Yan Y G, Tang X F. Hot Working Technology, 2019, 48(5), 206 (in Chinese).
罗闯, 鄢永高, 唐新峰. 热加工工艺, 2019, 48(5), 206.
22 Zhuang J R, Lee Y T, Hsieh W H, et al. Optics and Laser Technology, 2018, 103, 59.
23 Zhang L, Song J, Wu W, et al. Journal of Materials Research, 2019, 34(8), 1405.
24 Zhang L, Wu W H, Lu L, et al. Journal of Materials Engineering, 2018, 46(7), 29 (in Chinese).
张亮, 吴文恒, 卢林, 等. 材料工程, 2018, 46(7), 29.
25 Wolff S J, Wang H, Gould B, et al. International Journal of Machine Tools and Manufacture, 2021, 166, 103743.
26 Li J. Reserch on the geometrical feature and the molten pool's surface tension of laser cladding layer. Master's Thesis, Yanshan University, China, 2014 (in Chinese).
李健. 激光熔覆层几何特征与熔池表面张力初步研究. 硕士学位论文, 燕山大学, 2014.
27 Lane B, Zhirnov I, Mekhontsev S, et al. Additive Manufacturing, 2020, 36, 101504.
28 Peng Q, Dong S, Yan S, et al. Materials Reports A:Review Papers, 2018, 32(8), 2666 (in Chinese).
彭谦, 董世运, 闫世兴, 等. 材料导报:综述篇, 2018, 32(8), 2666.
29 Zhang Y Y, Lin X, Wei L, et al. Acta Metallurgica Sinica, 2017, 53(7), 824 (in Chinese).
张媛媛, 林鑫, 魏雷, 等. 金属学报, 2017, 53(7), 824.
30 Chen H, Gu D, Dai D, et al. Materials Science and Engineering A, 2017, 682, 279.
31 Chen H, Gu D, Xiong J, et al. Journal of Materials Processing Technology, 2017, 250, 99.
32 Jiang H F, Aiyiti W, An P F. Hot Working Technology, 2019, 48(10), 10 (in Chinese).
蒋厚峰, 乌日开西·艾依提, 安鹏芳. 热加工工艺, 2019, 48(10), 10.
33 An C, Zhang M Y, Zhang J S, et al. Laser Journal, 2018, 39(7), 68 (in Chinese).
安超, 张远明, 张金松, 等. 激光杂志, 2018, 39(7), 68.
34 Zhao M H, Duan C H, Luo X P. Journal of Laser Applications, 2020, 32(2), 022012.
[1] 袁信翊, 刘杨, 李明轩, 陆晓峰, 朱晓磊. 基于打印参数的选区激光熔化构件内部形貌调控研究现状[J]. 材料导报, 2022, 36(21): 20080263-9.
[2] 安宁, 吴浩恺, 朱敏, 郑月红, 占发奇, 喇培清. 盐助燃烧合成法大规模制备超细LaB6粉体及其烧结性能[J]. 材料导报, 2022, 36(11): 21010240-7.
[3] 王凯博, 刘玉欣, 吕耀辉, 徐滨士. 工艺参数对脉冲等离子弧增材制造IN738LC合金组织与性能的影响[J]. 材料导报, 2021, 35(2): 2086-2091.
[4] 宋亢, 坚增运, 王渭中, 陈焱. SLM成形10%SiC颗粒增强铝基复合材料的工艺优化及性能[J]. 材料导报, 2020, 34(Z2): 376-380.
[5] 叶帆, 马壮, 高丽红, 李文智, 马琛. 成分与致密度对陶瓷材料近红外反射率影响的数值模拟[J]. 材料导报, 2020, 34(6): 6049-6056.
[6] 郭宝超, 蒋恩, 陈亮. 压水堆驱动机构钩爪激光与GTAW钴基合金堆焊层组织分析及性能表征[J]. 材料导报, 2019, 33(z1): 416-419.
[7] 周宏明, 王博益, 李荐, 程名辉. CuO掺杂对钇钡铜氧陶瓷电性能的影响[J]. 材料导报, 2019, 33(2): 220-224.
[8] 赵爽, 杨自春, 周新贵. 先驱体浸渍裂解结合化学气相渗透工艺下二维半和三维织构SiC/SiC复合材料的结构与性能[J]. 材料导报, 2018, 32(16): 2715-2718.
[9] 李吉帅,戚文军,李亚江,黎小辉,王沛,刘建业. 选区激光熔化工艺参数对Ti-6Al-4V成形质量的影响*[J]. 材料导报编辑部, 2017, 31(10): 62-69.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed