Please wait a minute...
材料导报  2020, Vol. 34 Issue (6): 6049-6056    https://doi.org/10.11896/cldb.19020113
  无机非金属及其复合材料 |
成分与致密度对陶瓷材料近红外反射率影响的数值模拟
叶帆, 马壮, 高丽红, 李文智, 马琛
北京理工大学材料学院,北京 100081
Numerical Simulation of Near-infrared Reflectivity of Ceramic Materials with Different Components and Density
YE Fan, MA Zhuang, GAO Lihong, LI Wenzhi, MA Chen
School of Materials, Beijing Institute of Technology, Beijing 100081, China
下载:  全 文 ( PDF ) ( 10454KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究不同成分陶瓷材料在不同致密度下近红外反射性能的变化规律,对烧结过程中陶瓷材料的颗粒分布进行抽象建模,并利用电磁波时域有限差分方法(Finite-differencetime-domain,FDTD)分析了模型结构的反射率规律。结果表明,单组分和二组分陶瓷材料在相对疏松时,因大量孔隙/颗粒界面的存在,均表现出较高的反射率。材料致密化后,对于单组分体系,由于孔隙缩小甚至消失,反射界面数量大幅度减少,进而导致其反射性能发生骤降。而对于二组分体系,尽管致密化过程同样减少了孔隙与颗粒形成的反射界面数量,但二组分之间折射率的差异保证了异质界面的存在,故其反射率在致密化以后仍可保持较高水平。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶帆
马壮
高丽红
李文智
马琛
关键词:  时域有限差分方法  致密度  反射率    
Abstract: Some numerical models have been built to study the variation of near-infrared reflectivity of ceramic materials with different component and density. In these models, the different sintering stages are described as different particle density, and the reflectivity is analyzed by Finite-Difference Time-Domain method. The results indicate that the reflectivity of both one-component and two-component is higher in models with lo-wer density since the existence of lots of pore-particle interfaces. However, the reflectivity of one-component models is dropped sharply after densifying shrinkage and pores disappearance. Due to the existed interfaces between the two components in two-component models, the reflectivity of two-component models is still maintaining at a high level, even though densification is happened.
Key words:  finite-difference time-domain    density    reflectivity
                    发布日期:  2020-03-12
ZTFLH:  TN213  
作者简介:  叶帆,2019年6月毕业于北京理工大学,获得工学硕士学位,主要从事材料光学性能的数值模拟研究;马壮,北京理工大学材料科学与工程学院副院长,教授,博士生导师。2001年毕业于北京理工大学,材料学博士学位。同年留校参加教学和科研工作至今,主要从事应用于超高温、超高能防护领域的材料和涂层研究。在ACS Applied Materials and Interfaces等高水平SCI期刊发表论文数十篇。
引用本文:    
叶帆, 马壮, 高丽红, 李文智, 马琛. 成分与致密度对陶瓷材料近红外反射率影响的数值模拟[J]. 材料导报, 2020, 34(6): 6049-6056.
YE Fan, MA Zhuang, GAO Lihong, LI Wenzhi, MA Chen. Numerical Simulation of Near-infrared Reflectivity of Ceramic Materials with Different Components and Density. Materials Reports, 2020, 34(6): 6049-6056.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020113  或          http://www.mater-rep.com/CN/Y2020/V34/I6/6049
1 Jordan B R. Advances in Botanical Research, 1996, 22 (8), 97.
2 Jeevanandam P, Mulukutla R S, Phillips M, et al. Journal of Physical Chemistry C, 2007, 111 (5), 1912.
3 Levinson R, Berdahl P, Akbari H, et al. Solar Energy Materials & Solar Cells, 2005, 91 (4), 304.
4 Qiu Y. Research on the theory and application of diffuse reflectance spectroscopy. Master's thesis, Tongji University, China, 2007 (in Chinese).
邱雁. 漫反射光谱的理论与应用研究. 硕士学位论文, 同济大学, 2007.
5 Levinson R, Akbari H, Reilly J C. Building & Environment, 2007, 42 (7), 2591.
6 Levinson R, Akbari H, Berdahl P, et al. Solar Energy Materials & Solar Cells, 2010, 94 (6), 946.
7 Li Z H. Preparation and performance of solar-reflectance ceramics. Ph.D.Thesis, South China University of Technology, China, 2017 (in Chinese).
李智鸿. 太阳热反射陶瓷的制备及性能研究. 博士学位论文, 华南理工大学, 2017.
8 Ferrari C, Touchaei A G, Sleiman M, et al. Advances in Building Energy Research, 2014, 8 (1), 28.
9 Krajewski A, Mazzinghi P. Journal of Materials Science, 1994, 29 (1), 232.
10 Zhao K H, Zhong X H. Optics (rearrangement), Peking University Press, China, 2017 (in Chinese).
赵凯华,钟锡华. 光学 (重排本), 北京大学出版社, 2017.
11 Jing Z, Fu H, Scales W. IEEE Transactions on Plasma Science, 2018, PP (99), 1.
12 Li J, Wu P. Optik, 2018, 171, 468.
13 Ji J, Ma Y, Na G. Optik, 2018, 165, S575015112X.
14 Faraone G, Modi R, Marom S, et al. Optical Materials, 2018, 75, 204.
15 Bruck R, Hainberger R. Proceedings of SPIE-The International Society for Optical Engineering, 2011, 7943 (4), 217.
16 Chen Y. Research on the synthess and dioptric mechanismes of single butterfly wing scales' materials. Ph.D.Thesis, Shanghai Jiao Tong University, China, 2011 (in Chinese).
陈羽. 具有蝶翅单鳞片结构材料的制备及光学性能研究. 博士学位论文, 上海交通大学, 2011.
17 Yang L M, Pan C Y, Lu F P, et al. Optics & Laser Technology, 2015, 67, 72.
18 Ding W, Xia D, Li Q, et al. Proceedings of SPIE-The International Society for Optical Engineering, 2015, 9449, 94491L.
19 Niu Y. Numerical simulation and theoretical research on solid-phase sintering of powders. Ph.D.Thesis, University of Science and Technology of China, China, 2013 (in Chinese).
牛玉. 粉末固相烧结的数值模拟和理论问题研究. 博士学位论文, 中国科学技术大学, 2013.
20 Devore J R. Journal of the Optical Society of America, 1951, 41 (6),416.
21 Malitson I H. Journal of the Optical Society of America, 1965, 55 (10),1205.
22 Li D, Chen S O, Shao W Q, et al. Materials Review, 2007 (9),6 (in Chinese).
李达, 陈沙鸥, 邵渭泉, 等. 材料导报, 2007 (9),6.
[1] 周宏明, 王博益, 李荐, 程名辉. CuO掺杂对钇钡铜氧陶瓷电性能的影响[J]. 材料导报, 2019, 33(2): 220-224.
[2] 赵爽, 杨自春, 周新贵. 先驱体浸渍裂解结合化学气相渗透工艺下二维半和三维织构SiC/SiC复合材料的结构与性能[J]. 材料导报, 2018, 32(16): 2715-2718.
[3] 安锐, 韦红余, 何敏, 周来水, 梁晋华, 谢迪, 张志平, 吴焕琦. 碳基复合吸波材料研究进展分析*[J]. 《材料导报》期刊社, 2017, 31(21): 46-53.
[4] 李吉帅,戚文军,李亚江,黎小辉,王沛,刘建业. 选区激光熔化工艺参数对Ti-6Al-4V成形质量的影响*[J]. 材料导报编辑部, 2017, 31(10): 62-69.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed