Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (21): 46-53    https://doi.org/10.11896/j.issn.1005-023X.2017.021.007
  材料综述 |
碳基复合吸波材料研究进展分析*
安锐1, 韦红余1, 何敏2, 周来水1, 梁晋华2, 谢迪2, 张志平1, 吴焕琦1
1 南京航空航天大学机电学院,南京 210016;
2 中航工业成都飞机工业集团有限公司,成都 610092
The Progress Analysis of Carbon-based Composites Used for Electromagnetic Wave Absorption
AN Rui1, WEI Hongyu1, HE Min2, ZHOU Laishui1, LIANG Jinhua2, XIE Di2, ZHANG Zhiping1, WU Huanqi1
1 College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016;
2 AVIC Chengdu Aircraft Industry Group Co.Ltd., Chengdu 610092
下载:  全 文 ( PDF ) ( 2751KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳基材料由于具有优异的介电性能、良好的复合特性、特殊的微观结构、较低的密度、较强的化学稳定性以及使用便捷、维护简单等优点,在雷达吸波领域有着广阔的应用前景,已逐渐成为学界与工业界所追逐的热点研究对象与应用方向。本文在梳理总结分析国内外碳基材料雷达吸波应用研究成果的基础上,提出依据微观结构,按照形状维数划分归类,将材料分为零维(0D)、一维(1D)、二维(2D)和三维(3D)结构,进而以此为主线梳理碳基复合材料在雷达吸波隐身领域的研究进展,总结对比分析近年来国内外在碳基吸波材料方面的研究成果,指出未来材料将以“薄、轻、宽、强”为基础要求,朝着组成复合化、结构多样化、机理协同化和电磁参数可调化方向发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安锐
韦红余
何敏
周来水
梁晋华
谢迪
张志平
吴焕琦
关键词:  吸波  碳基复合材料  反射率  微观结构    
Abstract: Accounting the competitive dielectric properties, excellent composited performance, particular microstructure, low mass ratio, high chemistry stability and convenience of utilizing as well as maintaining etc., the carbon-based materials have shown great application potential for electromagnetic (EM) wave absorption and drawn extensive attention in academic and industrial field. Comparative analysis upon domestic and foreign researches have been engaged in the present review. Based on the analysis of the research results both at home and abroad, we classify carbon-based composite materials into zero-dimensional, one-dimensional, two-dimensional and three-dimensional composite structures, according to their dimensionality. Further more, the research progress of carbon-based composite materials used for radar EM wave absorption has been clearly elaborated on the basis of the present classification. It has been of common knowledge that “thinner thickness, lower mass, wider effective bandwidth, higher mechanical perfor-mance” are the basic requirements for future EM wave absorption materials. The developing directions of physical phases compositing, particle structure diversifying, mechanism coorperating and electromagnetism parameters adjusting are figured out by comparing and summarizing the international academic progress of absorption materials.
Key words:  electromagnetic wave absorption    carbon-based composites    reflection loss    microstructure
出版日期:  2017-11-10      发布日期:  2018-05-08
ZTFLH:  TB34  
基金资助: 国家自然科学基金青年项目(51105202);江苏省博士后创新基金A类项目(1402021A);南京航空航天大学校基础科研(3082015NS2015055)
通讯作者:  韦红余,男,1979年生,副教授,主要从事碳基磁性功能化复合材料及应用等方面的教学与研究 E-mail:whyme@nuaa.edu.cn   
作者简介:  安锐:男,1993年生,硕士研究生,主要从事吸波材料的研究
引用本文:    
安锐, 韦红余, 何敏, 周来水, 梁晋华, 谢迪, 张志平, 吴焕琦. 碳基复合吸波材料研究进展分析*[J]. 《材料导报》期刊社, 2017, 31(21): 46-53.
AN Rui, WEI Hongyu, HE Min, ZHOU Laishui, LIANG Jinhua, XIE Di, ZHANG Zhiping, WU Huanqi. The Progress Analysis of Carbon-based Composites Used for Electromagnetic Wave Absorption. Materials Reports, 2017, 31(21): 46-53.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.021.007  或          https://www.mater-rep.com/CN/Y2017/V31/I21/46
1 Liu L, Duan Y, Ma L, et al. Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black[J]. Appl Surf Sci, 2010,257(3):842.
2 Weng X, Lv X, Li B, et al. One-pot preparation of reduced graphene oxide/carbonyl iron/polyvinyl pyrrolidone ternary nanocomposite and its synergistic microwave absorbing properties[J]. Mater Lett, 2016,188:280.
3 Xu Y, Yuan L, Zhang D, et al. Microwave absorption and shielding property of composites with FeSiAl and carbonous materials as filler[J]. J Mater Sci Technol, 2012,28(10):913.
4 Zou T, Haipeng L I, Zhao N, et al. Electromagnetic and microwave absorbing properties of hollow carbon nanospheres[J]. Bull Mater Sci, 2013,36(2):213.
5 Lv H, Ji G, Liu W, et al. Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight feature[J]. J Mater Chem C, 2015,3(39):10232.
6 Zhu H L, Xu Z F, Cui H Z, et al. Surface modification as an effective approach to enhance the microwave absorbing properties of hollow carbon spheres[J]. Mater Res Exp,2016,3(10):105020.
7 Zhou C, Geng S, Xu X, et al. Lightweight hollow carbon nanos-pheres with tunable sizes towards enhancement in microwave absorption[J]. Carbon, 2016,108:234.
8 Ding D, Wang Y, Li X, et al. Rational design of core-shell Co@C microspheres for high-performance microwave absorption[J]. Carbon, 2016,111:722.
9 Huang Y, Zhang H, Zeng G, et al. The microwave absorption properties of carbon-encapsulated nickel nanoparticles/silicone resin flexible absorbing material[J]. J Alloys Compd, 2016,682:138.
10Han D, Or S W, Dong X, et al. FeSn2/defective onion-like carbon core-shell structured nanocapsules for high-frequency microwave absorption[J]. J Alloy Compd, 2016,695:2605.
11Chen J, Wang M, Meng P, et al. Electromagnetic and microwave absorption properties of the core-shell structured C@BaMg0.2Co0.8-TiFe10O19, nanoparticles[J]. J Mater Sci Mater Electron, 2016,28(2):2100.
12Zhou W, Long L, Xiao P, et al. Silicon carbide nano-fibers in-situ grown on carbon fibers for enhanced microwave absorption properties[J]. Ceram Int, 2017,43(7):5628.
13 刘顺华. 电磁波屏蔽及吸波材料[M]. 北京:化学工业出版社, 2014.
14Liu Y, Zhang Z, Xiao S, et al. Preparation and properties of cobalt oxides coated carbon fibers as microwave-absorbing materials[J]. Appl Surf Sci, 2011,257(17):7678.
15Chen X, Wang X, Li L, et al. Preparation and microwave absorbing properties of nickel-coated carbon fiber with polyaniline via in situ polymerization[J]. J Mater Sci: Mater Electron, 2016,27(6):5607.
16Qiu J, Wu X, Qiu T. High electromagnetic wave absorbing performance of activated hollow carbon fibers decorated with CNTs and Ni nanoparticles[J]. Ceram Int, 2015,42(4):5278.
17Wang W, Cao M. Ni3Sn2 alloy nanocrystals encapsulated within electrospun carbon nanofibers for enhanced microwave absorption performance[J]. Mater Chem Phys, 2016,177:198.
18Salimkhani H, Palmeh P, Khiabani A B, et al. Electrophoretic de-position of spherical carbonyl iron particles on carbon fibers as a microwave absorbent composite[J]. Surf Interfaces, 2016,5:1.
19Gupta A, Choudhary V. Electromagnetic interference shielding behavior of poly(trimethylene terephthalate)/multi-walled carbon nanotube composites[J]. Compos Sci Technol, 2011,71(13):1563.
20Alam R S, Moradi M, Nikmanesh H. Influence of multi-walled carbon nanotubes (MWCNTs) volume percentage on the magnetic and microwave absorbing properties of BaMg0.5Co0.5TiFe10O19/MWCNTs nanocomposites[J]. Mater Res Bull, 2016,73:261.
21Xu Y, Yuan L, Cai J, et al. Smart absorbing property of composites with MWCNTs and carbonyl iron as the filler[J]. J Magn Magn Mater, 2013,343(5):239.
22Afghahi S S S, Peymanfar R, Javanshir S, et al. Synthesis, characterization and microwave characteristics of ternary nanocomposite of MWCNTs/doped Sr-hexaferrite/PANI[J]. J Magn Magn Mater, 2016,423:152.
23Wang W, Li Q, Chang C. Effect of MWCNTs content on the magnetic and wave absorbing properties of ferrite-MWCNTs composites[J]. Synth Met, 2011,161(1-2):44.
24Munnazza Bibi, Syed Mustansar Abbas, Nisar Ahmad, et al. Microwaves absorbing characteristics of metal ferrite/multiwall carbon nanotubes nanocomposites in X-band[J]. Composites Part B, 2017,114:139.
25Huang L, Liu X, Dan C, et al. Flaky FeSiAl alloy-carbon nanotube composite with tunable electromagnetic properties for microwave absorption[J]. Sci Rep, 2016,6:35377.
26Xia R, Yin Y, Zeng M, et al. High-frequency absorption of the hybrid composites with spindle-like Fe3O4 nanoparticles and multiwalled carbon nanotubes[J]. Nano Brief Rep Rev, 2016,11(9):16397.
27Zhang Y, Zhang A, Ding L, et al. The effect of polymer spatial configuration on the microwave absorbing properties of non-covalent modified MWNTs[J]. Composites Part A, 2016,81(4):264.
28Kachusova A O, Ulianova O A, Dotsenko O A, et al. Effect of ultrasonic treatment on electromagnetic properties of composites based on multiwall carbon nanotubes at microwave frequency range[C]∥ International Conference of Young Specialists on Micro/nanotechno-logies and Electron Devices. Erlagol:IEEE, 2016:48.
29Kong L, Yin X, Han M, et al. Carbon nanotubes modified with ZnO nanoparticles: High-efficiency electromagnetic wave absorption at high-temperatures[J]. Ceram Int, 2015,41(3):4906.
30Yang C, Jiang J, Liu X, et al. Rare earth ions doped polyaniline/cobalt ferrite nanocomposites via a novel coordination-oxidative polymerization-hydrothermal route: Preparation and microwave-absor-bing properties[J]. J Magn Magn Mater, 2016,404(36):45.
31Qiu H, Wang J, Qi S, et al. Microwave absorbing properties of multi-walled carbon nanotubes/polyaniline nanocomposites[J]. J Mater Sci: Mater Electron, 2015,26(1):564.
32Chen D, Wang G S, He S, et al. Controllable fabrication of mono-dispersed RGO-hematite nanocomposites and their enhanced wave absorption properties[J]. J Mater Chem A, 2013,1(19):5996.
33Weng X, Li B, Zhang Y, et al. Synthesis of flake shaped carbonyl iron/reduced graphene oxide/polyvinyl pyrrolidone ternary nanocomposites and their microwave absorbing properties[J]. J Alloy Compd, 2017,695:508.
34Liu P, Huang Y, Zhang X. Preparation and excellent microwave absorption properties of ferromagnetic graphene/poly(3, 4-ethylene-dioxythiophene)/CoFe2O4, nanocomposites[J]. Powder Technol, 2015,276:112.
35Huang X, Yan X, Xia L, et al. A three-dimensional graphene/Fe3O4 /carbon microtube of sandwich-type architecture with improved wave absorbing performance[J]. Scr Mater, 2016,120:107.
36Chih-Chia Chen, Wen-Fan Liang, Yu-Hsun Nien, et al. Microwave absorbing properties of flake-shaped carbonyl iron/reduced graphene oxide/epoxy composites[J]. Mater Res Bull, 2017,DOI:10.1016/j. materres bull.2017.01.045.
37Han M, Yin X, Duan W, et al. Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability[J]. J Eur Ceram Soc, 2016,36(11):2695.
38Chen Y, Zhang A, Ding L, et al. A three-dimensional absorber hybrid with polar oxygen functional groups of MWNTs/graphene with enhanced microwave absorbing properties[J]. Composites Part B, 2017,108:386.
39Chen D, Wang G S, He S, et al. Controllable fabrication of mono-dispersed RGO-hematite nanocomposites and their enhanced wave absorption properties[J]. J Mater Chem A, 2013,1(19):5996.
40Sun D, Zou Q, Qian G, et al. Controlled synthesis of porous Fe3O4-decorated graphene with extraordinary electromagnetic wave absorption properties[J]. Acta Mater, 2013,61(15):5829.
41Yu H, Wang T, Wen B, et al. Graphene/polyaniline nanorod arrays: Synthesis and excellent electromagnetic absorption properties[J]. J Mater Chem, 2012,22(40):21679.
42Gao Feng,Li Pengfei,Wang Qun.Flattening effect on FeSiAl alloy structure and magnetic properties[J].Electron Compon Mater,2009,28(1):31(in Chinese).
高峰, 李鹏飞, 王群. 扁平化对FeSiAl合金结构及电磁特性的影响[J]. 电子元件与材料, 2009,28(1):31.
43Zong M, Huang Y, Zhang N, et al. Influence of (RGO)/(ferrite) ratios and graphene reduction degree on microwave absorption pro-perties of graphene composites[J]. J Alloy Compd, 2015,644:491.
44Dan C, Liu X, Yu R, et al. Enhanced microwave absorption properties of flake-shaped FePCB metallic glass/graphene composites[J]. Composites Part A, 2016,89:33.
45Fan Y, Yang H, Li M, et al. Evaluation of the microwave absorption property of flake graphite[J]. Mater Chem Phys, 2009,115(2-3):696.
46Fan Y, Yang H, Liu X, et al. Preparation and study on radar absorbing materials of nickel-coated carbon fiber and flake graphite[J]. J Alloy Compd, 2008,461(1-2):490.
47Yang W, Fu Y, Xia A, et al. Microwave absorption property of Ni-Co-Fe-P-coated flake graphite prepared by electroless plating[J]. J Alloy Compd, 2012,518(2):6.
48Liu Z, He F, Gao F, et al. Fabrication and electromagnetic properties of novel FeNi alloy-coated flake graphite prepared by electroless plating[J]. J Alloy Compd, 2016,656:51.
49Wang Chen,Kang Feiyu,Gu Jialin.Iron cobalt nickel alloy particle/graphite flake preparation and absorbing properties of composite materials research[J].J Inorg Mater, 2010,25(4):406(in Chinese).
王晨, 康飞宇, 顾家琳. 铁钴镍合金粒子/石墨薄片复合材料的制备与吸波性能研究[J]. 无机材料学报, 2010,25(4):406.
50Wang C, Lv R, Huang Z, et al. Synthesis and microwave absorbing properties of FeCo alloy particles/graphite nanoflake composites[J]. J Alloy Compd, 2011,509(2):494.
51Shen G, Xu Y, Liu B, et al. Enhanced microwave absorption pro-perties of N-doped ordered mesoporous carbon plated with metal Co[J]. J Alloy Compd, 2016,680:553.
52Wu H, Wang L, Wang Y, et al. Enhanced microwave absorbing properties of carbonyl iron-doped Ag/ordered mesoporous carbon nanocomposites[J]. Mater Sci Eng B, 2012,177(6):476.
53Du Y, Liu T, Yu B, et al. The electromagnetic properties and microwave absorption of mesoporous carbon[J]. Mater Chem Phys, 2012,135(2-3):884.
54Ma Y Z, Yin X W, Quan L I. Effects of heat treatment temperature on microstructure and electromagnetic properties of ordered mesoporous carbon[J]. Trans Nonferr Met Soc China, 2013,23(6):1652.
55Jyoti Prasad Gogoi, Nidhi Saxena Bhattacharyya, Satyajib Bhattacharyya. Single layer microwave absorber based on expanded gra-phite-novolac phenolic resin composite for X-band applications[J]. Composites Part B, 2014,58:518.
56Xu Y, Yan Z, Zhang D. Microwave absorbing property of a hybrid absorbent with carbonyl irons coating on the graphite[J]. Appl Surf Sci, 2015,356:1032.
57Li Xueai,Wang Chunsheng,Han Xijiang.In situ chemical precipita-tion of preparing Fe3O4-graphite composites absorbing performance[J].Mater Eng, 2015,43(5):44(in Chinese).
李雪爱, 王春生, 韩喜江. 原位化学沉淀法制备Fe3O4-石墨复合材料的吸波性能[J]. 材料工程, 2015,43(5):44.
58Zhang Y, He P, Yuan J, et al. Effects of graphite on the mechanical and microwave absorption properties of geopolymer based compo-sites[J]. Ceram Int, 2016,43(2):2325.
59Li Jia,Liu Hongbo,Yang Li.Nano iron cobalt alloy/graphite composite materials microwave absorbing performance of the research[J].J Inorg Mater, 2014,29(5):470(in Chinese).
李佳, 刘洪波, 杨丽. 纳米铁钴合金/石墨复合材料的微波吸收性能研究[J]. 无机材料学报, 2014,29(5):470.
60Xu Feng,Xiang Chen,Li Liangchao,et al.CoFe2O4 and the preparation of expanded graphite composites with electromagnetic properties[J].J High School Chem, 2013,34(10):2254(in Chinese).
许峰, 向晨, 李良超,等. CoFe2O4及其膨胀石墨复合物的制备与电磁性能[J]. 高等学校化学学报, 2013,34(10):2254.
[1] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[2] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[3] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[4] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[5] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[6] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[9] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[10] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[11] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[12] 阮心怡, 张恒宇, 王妮, 肖红. 周期结构电磁超材料吸波体的设计及最新进展[J]. 材料导报, 2024, 38(3): 22090223-11.
[13] 张昊, 黄宗玥, 张妍彬, 魏剑. (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能[J]. 材料导报, 2024, 38(3): 22050232-6.
[14] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[15] 刘开强, 于骏杰, 王海平, 张夏雨, 金诚, 张兴国. 地层渗流水对凝固过程固井水泥浆的侵扰机理[J]. 材料导报, 2024, 38(24): 23070062-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed