1 School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China 2 National Key Laboratory for Remanufacturing, Army Armored Force Institute, Beijing 100072, China 3 School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710000, China
Abstract: Piezoelectric ceramics are important functional materials to realize the mutual conversion of mechanical energy and electrical energy. Lead-based piezoelectric ceramics represented by lead zirconate titanate (PZT) are currently widely used in many commercial high-tech electronic products such as sensors, actuators and transducers due to their excellent comprehensive electrical properties. However, the toxicity and volatility of metal lead will cause great damage to the ecological environment. In recent years, many countries have legislated to restrict the use of lead-containing electronic products. Therefore, lead-free piezoelectric ceramics has become the research focus of domestic and foreign scholars. In various lead-free piezoelectric ceramics. Potassium sodium niobate (KNN)-based lead-free piezoelectric ceramics are considered as one of the ideal materials to replace lead-based piezoelectric ceramics due to their excellent piezoelectric and dielectric properties and high Curie tempe-rature. Over the years, researchers have constructed multiphase coexistence phase boundaries such as quasi-homotypic phase boundaries (MPB) or polycrystalline phase boundaries (PPB) of KNN-based ceramics at room temperature by adjusting the K/Na ratio, ion doping, and adding new group components. Under the multiphase coexistence phase boundary, the potential barriers of each direction are lower, the polarization direction increases, and the electric domain is easily reversed, so that the ceramic has a high piezoelectric effect. At present, the piezoelectric performance of KNN-based lead-free piezoelectric ceramics exceeds that of some lead-based piezoelectric ceramics by constructing nanoscale tripartite (R)-orthogonal (O)-tetragonal (T) coexisting phase boundaries. The ultra-high piezoelectric performance comes from the construction of novel phase boundaries (NPBs). Combined with relevant literature in recent years, this paper takes the phase boundary as the starting point, and summarizes the latest research progress of MPB, PPB and NPB in KNN-based lead-free ceramics at home and abroad; the latest reports in the literature related to the construction of phase boundaries and the regulation of piezoelectric properties by the composition and grain size of ceramic systems are emphasized; the problems faced by KNN lead-free piezoelectric ceramics in the direction of phase boundary research are analyzed and their prospects are prospected, which provides a reference for the development of high-performance lead-free piezoelectric ceramics.
通讯作者:
*贾磊,西安理工大学材料科学与工程学院教授、硕士生导师。2012年博士毕业于西安理工大学材料科学与工程专业,随后留校任教,期间2013—2014年2016—2017年分别在日本大阪大学接合科学研究所从事博士后研究和加拿大渥太华大学进行高等教育教学访问研究。主要从事金属基复合材料、先进陶瓷材料的制备、相变行为与强韧化机理研究。近年来在材料科学领域发表论文30余篇,包括Journal of Alloys and Compounds、Materials Characterization、Materials Science and Engineering A、Journal of Materials Science等。xautjialei@163.com 郭伟玲,中国人民解放军陆军装甲兵学院装备保障与再制造系装备再制造技术国防科技重点实验室副研究员。2010年7月在北京师范大学物理化学专业取得博士学位。近年来,主要从事表面工程领域的科研工作,主持项目3项,参与项目10余项,发表学术论文20余篇,获授权国家发明专利2项,受理5项,参编专著1部。guoweiling_426@163.com
1 Seonghun P, Shakeel A M, Youngsub L, et al. Sensors(Basel, Switzerland), 2021, 21(8), 2680. 2 Tang M X, Chen L, Qi H, et al. Materials Reports, 2022, 36(2), 66(in Chinese). 唐明响, 陈良, 祁核, 等. 材料导报, 2022, 36(2), 66. 3 Yao R F, Wang Y, Gao J H, et al. Transactions of China Electrotechnical Society, 2021, 36(7), 1324(in Chinese). 姚睿丰, 王妍, 高景晖, 等. 电工技术学报, 2021, 36(7), 1324. 4 Song Y Y, Huang Y F, Guo W L,et al. Materials Reports, 2022, 36(5), 34(in Chinese). 宋牙牙, 黄艳斐, 郭伟玲, 等. 材料导报, 2022, 36(5), 34. 5 Xi K B, Li Y L, Zheng Z S, et al. China Ceramics, 2020, 56(10), 20(in Chinese). 席凯彪, 李远亮, 郑占申, 等. 中国陶瓷, 2020, 56(10), 20. 6 Liu X, Tan X. Advanced Materials Technologies, 2016, 28, 574. 7 Ko S Y, Park J H, Kim I W, et al. Journal of the European Ceramic Society, 2017, 37(1), 407. 8 Zhai Y Z, Feng Y, Du J, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(5), 4352. 9 Zheng T, Wu J, Xiao D, et al. Progress in Materials Science, 2018, 98, 552. 10 Zhang Y C, Li J F. Journal of Materials Chemistry C, 2019, 7, 4284. 11 Liu Y X, Li Z, Tang H Z, et al. Acta Physica Sinica, 2020, 69(21), 86(in Chinese). 刘亦轩, 李昭, 汤浩正, 等. 物理学报, 2020, 69(21), 86. 12 Saito Y, Takao H, Tani T, et al. Nature, 2004, 432(7013), 84. 13 Lv X, Wu J, Zhu J, et al. Journal of the European Ceramic Society, 2018, 38(1), 85. 14 Yu H, Wang X, Guo L, et al. Journal of the American Ceramic Society, 2013(11), 3470. 15 Tao H, Wu H J, Liu Y, et al. Journal of the American Chemical Society, 2019, 141(35), 13987. 16 Huan Y, Wei T, Wang Z, et al. Journal of the European Ceramic Society, 2019, 39, 1002. 17 Li F, Wang K, Zhu Y, et al. Journal of the American Ceramic Society, 2013, 96(12), 3677. 18 Li Q, Zhang R, Lv T Q, et al. Chinese Physics B, 2015, 24(5), 053101. 19 Wu J G, Xiao D Q, Zhu J G. Chemical Society Reviews, 2015, 115, 2559. 20 Qin Y L, Zhang J L, Yao W Z, et al. ACS Applied Materials & Interfaces, 2016, 8, 7257. 21 Dai Y J, Zhang X W, Zhou G Y. Applied Physics Letters, 2007, 90(26), 262903. 22 Liu L J. Study on the structure, defects and electrical properties of pe-rovskite niobium titanate materials. Ph. D. Thesis, Northwestern Polytechnical University, China, 2019(in Chinese). 刘来君. 钙钛矿铌钛酸盐材料的结构、缺陷与电学性能研究, 西北工业大学, 2009. 23 Jaffe B, Roth R S, Marzullo S. Journal of Applied Physics, 1954, 25(6), 809. 24 Zhao R, Li Y, Zheng Z, et al. Materials Chemistry and Physics, 2020, 245, 122806. 25 Dai Y J, Zhang X W, Chen K P. Applied Physics Letters, 2009, 94(3), 4141. 26 Meng X H, Wang W, Ke H, et al. Materials Science and Engineering, 2016, 212, 1. 27 Denis A, Anton T, Andrei K, et al. Materials, 2017, 10(1), 47. 28 Shen Z Y, Xiao Z G, Li Y M, et al. Key Engineering Materials, 2012, 512-515, 1390. 29 Zhao R, Li Y, Zheng Z, et al. Materials Chemistry and Physics, 2020, 245, 122806. 30 Fu H R, Wang Y G, Guo H, et al. Ceramics International, 2021, 47(8), 10996. 31 Wang K, Li J F. Advanced Functional Materials, 2010, 20(12), 1924. 32 Wu J, Xiao D, Wang Y, et al. Applied Physics Letters, 2007, 91(25), 014103. 33 Xu Y. The structure and properties of KNN-based lead-free piezoelectric ceramics near the polycrystalline phase boundary. Ph. D. Thesis, Tsinghua University, China, 2016(in Chinese). 郇宇. KNN基无铅压电陶瓷在多晶型相界附近的结构与性能. 清华大学, 2016. 34 Wu B, Ma J, Wu W J, et al. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2017, 710, 130. 35 Lv X, Zhu J G, Xiao D Q, et al. Chemical Society Reviews, 2020, 49(3), 671. 36 Xing J, Tan Z, Yuan J, et al. RSC Advances, 2016, 6(62), 57210. 37 Zhou C, Zhang J, Yao W, et al. Journal of Alloys and Compounds, 2019, 820, 153411. 38 Zhang M H, Wang K, Zhou J S, et al. Acta Materialia, 2017, 122, 344. 39 Xu K, Li J, Lv X, et al. Advanced Materials, 2016, 28(38), 8519. 40 Boucher E, Guiffard B, Lebrun L, et al. Ceramics International, 2006, 32, 479. 41 Chen H, Long J, Meng Z. Material Science and Engineering B, 2003, 99, 434. 42 Egerton L, Dillon D M. Journal of the American Ceramic Society, 1959, 42(9), 438. 43 Ahtee M, Glazer A M. Acta Crystallographica Section A Foundations of Crystallography, 2010, 32(3), 434. 44 Tellier J, Malic B, Dkhil B, et al. Solid State Sciences, 2009, 11, 320. 45 Wu J, Xiao D, Wang Y, et al. Journal of Applied Physics, 2008, 103(2), 115. 46 Wu J, Xiao D, Wang Y, et al. Journal of the American Ceramic Society, 2010, 91(7), 2385. 47 Zhang Q, Li H T, Shang P P. Rare Metals, 2010, 29(2), 220. 48 Jing L, Zhu J, Wang M, et al. Ceramics International, 2012, 38(S1), S347. 49 Zhang R, Yang H, Jiang M, et al. Journal of Guilin University of Electronic Technology, 2019, 39(5), 425. 50 Jia M M, Ma J. Advanced Materials Research, 2014, 887-888, 299. 51 Zhao X K, Zhang B P, Qin H X, et al. China Sciencepaper, 2013, 8(2), 149(in Chinese). 赵笑昆, 张波萍, 秦海霞, 等. 中国科技论文, 2013, 8(2), 149. 52 Zuo R Z, Fu J. Journal of the American Ceramic Society, 2011, 94(5), 1467. 53 Yi C, Xue D, Yu M, et al. Physics Letters A, 2016, 380(37), 2974. 54 Wang R P, Bando H, Kidate M, et al. Japanese Journal of Applied Phy-sics, 2011, 50(3), 1. 55 Liang W, Wu W, Xiao D, et al. Journal of Materials Science, 2011, 46(21), 6871. 56 Tao H, Xiao D, Chao L, et al. Ceramics International, 2014, 40(2), 2731. 57 Liu C, Xiao D, Huang T, et al. Materials Letters, 2014, 120(1), 275. 58 Ogawa H, Iida D, Takahashi S, et al. Ferroelectrics, 2016, 497(1), 52. 59 Zhang M H, Wang K, Zhou J S, et al. Acta Materialia, 2017, 122, 344. 60 Luo J, Zhang S W, Zhou Z, et al. Journal of the American Ceramic Society, 2019, 102(5), 2770. 61 Kim B H, Yang S A, Lee M K, et al. Ceramics International, 2017, 43(17), 15880. 62 Zuo R Z, Fang X S, Ye C. Applied Physics Letters, 2007, 90(9), 92904. 63 Zhang S, Ru X, Shrout T R, et al. Solid State Communications, 2007, 141(12), 675. 64 Lin D M, Kwok K W, Lam K H, et al. Journal of Applied Physics, 2007, 101(7), 074111. 65 Zhang S J, Xia R, Shrout T R, et al. Journal of Applied Physics, 2006, 100(10), 104108. 66 Wu J G, Xiao D Q, Wang Y Y, et al. Journal of Applied Physics, 2008, 103(2), 115. 67 Huang X L, Xiao D Q, Wu J G, et al. Ferroelectrics, 2009, 385(1), 6108. 68 Cheng X, Wu J, Wang X, et al. Dalton Transactions, 2014, 43(9), 3434. 69 Zhang S, Ru X, Shrout T R. Applied Physics Letters, 2007, 91(13), 132913. 70 Zhang S, Ru X, Shrout T R, et al. Solid State Communications, 2007, 141(12), 675. 71 Hu Y B, Liu X Y, Jiang M H, et al. Journal of Materials Science: Materials in Electronics, 2013, 24(1), 331. 72 Wang Y Y, Wu J G, Xiao D Q, et al. Jorunal of Functional Materials, 2007, 38(2), 724(in Chinese). 王媛玉, 吴家刚, 肖定全, 等. 功能材料, 2007, 38(2), 724. 73 Xing J, Chen H, JiangL, et al. Nano Energy, 2021, 84(8), 105900. 74 Pan D, Guo Y, Zhang K, et al. Journal of Alloys & Compounds, 2017, 693, 950. 75 Wang Y. Journal of Electroceramics, 2008, 21(21), 629. 76 Lei C, Ye Z G. Applied Physicsletters, 2008, 93(4), 223. 77 Guo Y, Kakimoto K I, Ohsato H. Applied Physics Letters, 2004, 85(18), 4121. 78 Malic B, Bernard J, Holc J, et al. Journal of the European Ceramic Society, 2005, 25(12), 2707. 79 Zuo RZ, Fu J, Lv D Y, et al. Journal of the American Ceramic Society, 2010, 93(9), 2783. 80 Lin D, Kwok K W, Chan H L W. Applied Physics A, 2008, 91(1), 167. 81 Wang X, Wu J, Cheng X, et al. Ceramics International, 2013, 39(7), 8021. 82 Shen Z Y, Li J F, Wang K, et al. Journal of the American Ceramic Society, 2010, 93(5), 1378. 83 Wu J G, Wang Y Y, Xiao D Q, et al. Applied Physics Letters, 2007, 91, 132914. 84 Wang XP, Wu J G, Xiao D Q, et al. Journal of the American Chemical Society, 2014, 136(7), 2905. 85 Lee J K, Kim J H, Cho J H, et al. Ceramics International, 2012, 38(S1), S339. 86 Yong G, Zhang J, Qing Y, et al. Journal of the American Ceramic Society, 2011, 94(9), 2968. 87 Dambekalne M, Antonova M, Livinsh M, et al. Integrated Ferroelectrics, 2010, 102(1), 52. 88 Jia K L. Preparation and size effect of niobate-based lead-free piezoelectric material. Master’s Thesis, China University of Petroleum, China, 2016(in Chinese). 贾凯丽. 铌酸盐基无铅压电材料的可控制备与尺寸效应研. 硕士学位论文, 中国石油大学, 2016. 89 Zhou Z Y, Ding C, Piao Z Y, et al. Journal of Manufacturing Processes, 2021, 71, 653. 90 Zhou Z Y, Zheng Q Y, Piao Z Y, et al. Journal of Materials Research and Technology, 2021, 13, 1068. 91 Arilt G. Ferroelectrics, 1990, 104(1), 217. 92 Zheng P, Zhang J L, Tan Y Q, et al. Acta Materialia, 2012, 60(13-14), 5022. 93 Ghayour H, Abdellahi M. Powder Technology, 2016, 291, 84. 94 Huan Y, Wang X H, Fang J, et al. Journal of the European Ceramic Society, 2014, 34(5), 1445. 95 Akdogan E K. In:Handbook of low and high dielectric constant materials and their applications, Leonard M R, Safari A, ed. , Elsevier, Japan, 1999, pp. 61. 96 Polotai A V, Ragulya A V, Randall C A. Ferroelectrics, 2003, 288, 93. 97 Wang X, Deng X, Wen H, et al. Applied Physics Letters, 2006, 89(16), 162902. 98 Kamel T M, With G D. Journal of the European Ceramic Society, 2008, 28(4), 851. 99 Pramaink R, Sahukar M K, Mohan Y, et al. Ceramics International, 2019, 45(5), 5731. 100 Yu T, Shen Z X, Toh W S, et al. Journal of Applied Physics, 2003, 94(1), 618. 101 Shiratori Y, Magrez A, Pithan C. Journal of the European Ceramic Society, 2005, 25(12), 2075. 102 Yang W W, Li P, Wu S H, et al. Advanced Electronic Materials, 2019, 5(12), 1900570. 103 Cen H Y, Yu Y, Zhao P Y, et al. Journal of Materials Chemistry C, 2019, 7(5), 1379.