Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 21090233-9    https://doi.org/10.11896/cldb.21090233
  无机非金属及其复合材料 |
KNN基无铅压电陶瓷相界研究进展
贺耿超1,2, 黄艳斐2, 邢志国2, 周龙龙2,3, 吕振林1, 贾磊1,*, 郭伟玲2,*
1 西安理工大学材料科学与工程学院,西安 710048
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 西安科技大学机械工程学院,西安 710000
Research Progress on Phase Boundary of KNN-based Lead-free Piezoelectric Ceramics
HE Gengchao1,2, HUANG Yanfei2, XING Zhiguo2, ZHOU Longlong2,3, LYU Zhenlin1, JIA Lei1,*, GUO Weiling2,*
1 School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
2 National Key Laboratory for Remanufacturing, Army Armored Force Institute, Beijing 100072, China
3 School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710000, China
下载:  全 文 ( PDF ) ( 11236KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 压电陶瓷是实现机械能与电能相互转换的重要功能材料。目前,以锆钛酸铅(PZT)为代表的铅基压电陶瓷因具有优异的综合电学性能被广泛用于传感器、执行器和换能器等许多商业高科技电子产品。然而,金属铅的毒性以及易挥发性会对生态环境造成极大损害。近年来,许多国家已立法限制使用含铅的电子产品。因此,压电陶瓷无铅化成为国内外学者的研究重点。
而在各类无铅压电陶瓷中,铌酸钾钠(KNN)基无铅压电陶瓷因具有优异的压电、介电性能和较高的居里温度,被认为是取代铅基压电陶瓷的理想材料之一。多年来,研究者通过调节K/Na比、离子掺杂、添加新组元等方式构建室温下KNN基陶瓷多相共存相界(如准同型相界(MPB)或多晶型相界(PPB))。多相共存相界下各个相势垒较低,极化方向增加,电畴易发生翻转,从而使陶瓷产生高的压电效应。目前,KNN基无铅压电陶瓷因具有纳米级三方相(R)-正交相(O)-四方相(T)三相共存相界,其压电性能已超过某些铅基压电陶瓷。超高的压电性能来源于新型相界(NPB)的构建。
结合近年来相关文献,本文以相界作为出发点,综述了国内外KNN基无铅陶瓷中MPB、PPB以及NPB的最新研究进展;重点阐述了陶瓷体系成分和晶粒尺寸对构建相界以及调控压电性能相关文献的最新报导;分析了KNN无铅压电陶瓷在相界研究方向上面临的问题并展望其前景。以此为开发高性能无铅压电陶瓷提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贺耿超
黄艳斐
邢志国
周龙龙
吕振林
贾磊
郭伟玲
关键词:  铌酸钾钠  多相相界  准同型相界MPB  多晶型相界PPB  组分设计  晶粒尺寸    
Abstract: Piezoelectric ceramics are important functional materials to realize the mutual conversion of mechanical energy and electrical energy. Lead-based piezoelectric ceramics represented by lead zirconate titanate (PZT) are currently widely used in many commercial high-tech electronic products such as sensors, actuators and transducers due to their excellent comprehensive electrical properties. However, the toxicity and volatility of metal lead will cause great damage to the ecological environment. In recent years, many countries have legislated to restrict the use of lead-containing electronic products. Therefore, lead-free piezoelectric ceramics has become the research focus of domestic and foreign scholars.
In various lead-free piezoelectric ceramics. Potassium sodium niobate (KNN)-based lead-free piezoelectric ceramics are considered as one of the ideal materials to replace lead-based piezoelectric ceramics due to their excellent piezoelectric and dielectric properties and high Curie tempe-rature. Over the years, researchers have constructed multiphase coexistence phase boundaries such as quasi-homotypic phase boundaries (MPB) or polycrystalline phase boundaries (PPB) of KNN-based ceramics at room temperature by adjusting the K/Na ratio, ion doping, and adding new group components. Under the multiphase coexistence phase boundary, the potential barriers of each direction are lower, the polarization direction increases, and the electric domain is easily reversed, so that the ceramic has a high piezoelectric effect. At present, the piezoelectric performance of KNN-based lead-free piezoelectric ceramics exceeds that of some lead-based piezoelectric ceramics by constructing nanoscale tripartite (R)-orthogonal (O)-tetragonal (T) coexisting phase boundaries. The ultra-high piezoelectric performance comes from the construction of novel phase boundaries (NPBs).
Combined with relevant literature in recent years, this paper takes the phase boundary as the starting point, and summarizes the latest research progress of MPB, PPB and NPB in KNN-based lead-free ceramics at home and abroad; the latest reports in the literature related to the construction of phase boundaries and the regulation of piezoelectric properties by the composition and grain size of ceramic systems are emphasized; the problems faced by KNN lead-free piezoelectric ceramics in the direction of phase boundary research are analyzed and their prospects are prospected, which provides a reference for the development of high-performance lead-free piezoelectric ceramics.
Key words:  potassium sodium niobate(KNN)    polyphase boundary    quasi-homotypic phase boundary(MPB)    polycrystalline phase boundary(PPB)    component design    grain size
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  TB381  
基金资助: 国家自然科学基金(52005511)
通讯作者:  *贾磊,西安理工大学材料科学与工程学院教授、硕士生导师。2012年博士毕业于西安理工大学材料科学与工程专业,随后留校任教,期间2013—2014年2016—2017年分别在日本大阪大学接合科学研究所从事博士后研究和加拿大渥太华大学进行高等教育教学访问研究。主要从事金属基复合材料、先进陶瓷材料的制备、相变行为与强韧化机理研究。近年来在材料科学领域发表论文30余篇,包括Journal of Alloys and Compounds、Materials Characterization、Materials Science and Engineering A、Journal of Materials Science等。xautjialei@163.com
郭伟玲,中国人民解放军陆军装甲兵学院装备保障与再制造系装备再制造技术国防科技重点实验室副研究员。2010年7月在北京师范大学物理化学专业取得博士学位。近年来,主要从事表面工程领域的科研工作,主持项目3项,参与项目10余项,发表学术论文20余篇,获授权国家发明专利2项,受理5项,参编专著1部。guoweiling_426@163.com   
作者简介:  贺耿超,2019年毕业于陕西理工大学,获得工学学士学位。现为西安理工大学材料科学与工程学院硕士研究生,在邢志国助理研究员的指导下进行研究。目前主要研究领域为铌酸钾钠无铅压电陶瓷涂层。
引用本文:    
贺耿超, 黄艳斐, 邢志国, 周龙龙, 吕振林, 贾磊, 郭伟玲. KNN基无铅压电陶瓷相界研究进展[J]. 材料导报, 2023, 37(20): 21090233-9.
HE Gengchao, HUANG Yanfei, XING Zhiguo, ZHOU Longlong, LYU Zhenlin, JIA Lei, GUO Weiling. Research Progress on Phase Boundary of KNN-based Lead-free Piezoelectric Ceramics. Materials Reports, 2023, 37(20): 21090233-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090233  或          http://www.mater-rep.com/CN/Y2023/V37/I20/21090233
1 Seonghun P, Shakeel A M, Youngsub L, et al. Sensors(Basel, Switzerland), 2021, 21(8), 2680.
2 Tang M X, Chen L, Qi H, et al. Materials Reports, 2022, 36(2), 66(in Chinese).
唐明响, 陈良, 祁核, 等. 材料导报, 2022, 36(2), 66.
3 Yao R F, Wang Y, Gao J H, et al. Transactions of China Electrotechnical Society, 2021, 36(7), 1324(in Chinese).
姚睿丰, 王妍, 高景晖, 等. 电工技术学报, 2021, 36(7), 1324.
4 Song Y Y, Huang Y F, Guo W L,et al. Materials Reports, 2022, 36(5), 34(in Chinese).
宋牙牙, 黄艳斐, 郭伟玲, 等. 材料导报, 2022, 36(5), 34.
5 Xi K B, Li Y L, Zheng Z S, et al. China Ceramics, 2020, 56(10), 20(in Chinese).
席凯彪, 李远亮, 郑占申, 等. 中国陶瓷, 2020, 56(10), 20.
6 Liu X, Tan X. Advanced Materials Technologies, 2016, 28, 574.
7 Ko S Y, Park J H, Kim I W, et al. Journal of the European Ceramic Society, 2017, 37(1), 407.
8 Zhai Y Z, Feng Y, Du J, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(5), 4352.
9 Zheng T, Wu J, Xiao D, et al. Progress in Materials Science, 2018, 98, 552.
10 Zhang Y C, Li J F. Journal of Materials Chemistry C, 2019, 7, 4284.
11 Liu Y X, Li Z, Tang H Z, et al. Acta Physica Sinica, 2020, 69(21), 86(in Chinese).
刘亦轩, 李昭, 汤浩正, 等. 物理学报, 2020, 69(21), 86.
12 Saito Y, Takao H, Tani T, et al. Nature, 2004, 432(7013), 84.
13 Lv X, Wu J, Zhu J, et al. Journal of the European Ceramic Society, 2018, 38(1), 85.
14 Yu H, Wang X, Guo L, et al. Journal of the American Ceramic Society, 2013(11), 3470.
15 Tao H, Wu H J, Liu Y, et al. Journal of the American Chemical Society, 2019, 141(35), 13987.
16 Huan Y, Wei T, Wang Z, et al. Journal of the European Ceramic Society, 2019, 39, 1002.
17 Li F, Wang K, Zhu Y, et al. Journal of the American Ceramic Society, 2013, 96(12), 3677.
18 Li Q, Zhang R, Lv T Q, et al. Chinese Physics B, 2015, 24(5), 053101.
19 Wu J G, Xiao D Q, Zhu J G. Chemical Society Reviews, 2015, 115, 2559.
20 Qin Y L, Zhang J L, Yao W Z, et al. ACS Applied Materials & Interfaces, 2016, 8, 7257.
21 Dai Y J, Zhang X W, Zhou G Y. Applied Physics Letters, 2007, 90(26), 262903.
22 Liu L J. Study on the structure, defects and electrical properties of pe-rovskite niobium titanate materials. Ph. D. Thesis, Northwestern Polytechnical University, China, 2019(in Chinese).
刘来君. 钙钛矿铌钛酸盐材料的结构、缺陷与电学性能研究, 西北工业大学, 2009.
23 Jaffe B, Roth R S, Marzullo S. Journal of Applied Physics, 1954, 25(6), 809.
24 Zhao R, Li Y, Zheng Z, et al. Materials Chemistry and Physics, 2020, 245, 122806.
25 Dai Y J, Zhang X W, Chen K P. Applied Physics Letters, 2009, 94(3), 4141.
26 Meng X H, Wang W, Ke H, et al. Materials Science and Engineering, 2016, 212, 1.
27 Denis A, Anton T, Andrei K, et al. Materials, 2017, 10(1), 47.
28 Shen Z Y, Xiao Z G, Li Y M, et al. Key Engineering Materials, 2012, 512-515, 1390.
29 Zhao R, Li Y, Zheng Z, et al. Materials Chemistry and Physics, 2020, 245, 122806.
30 Fu H R, Wang Y G, Guo H, et al. Ceramics International, 2021, 47(8), 10996.
31 Wang K, Li J F. Advanced Functional Materials, 2010, 20(12), 1924.
32 Wu J, Xiao D, Wang Y, et al. Applied Physics Letters, 2007, 91(25), 014103.
33 Xu Y. The structure and properties of KNN-based lead-free piezoelectric ceramics near the polycrystalline phase boundary. Ph. D. Thesis, Tsinghua University, China, 2016(in Chinese).
郇宇. KNN基无铅压电陶瓷在多晶型相界附近的结构与性能. 清华大学, 2016.
34 Wu B, Ma J, Wu W J, et al. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2017, 710, 130.
35 Lv X, Zhu J G, Xiao D Q, et al. Chemical Society Reviews, 2020, 49(3), 671.
36 Xing J, Tan Z, Yuan J, et al. RSC Advances, 2016, 6(62), 57210.
37 Zhou C, Zhang J, Yao W, et al. Journal of Alloys and Compounds, 2019, 820, 153411.
38 Zhang M H, Wang K, Zhou J S, et al. Acta Materialia, 2017, 122, 344.
39 Xu K, Li J, Lv X, et al. Advanced Materials, 2016, 28(38), 8519.
40 Boucher E, Guiffard B, Lebrun L, et al. Ceramics International, 2006, 32, 479.
41 Chen H, Long J, Meng Z. Material Science and Engineering B, 2003, 99, 434.
42 Egerton L, Dillon D M. Journal of the American Ceramic Society, 1959, 42(9), 438.
43 Ahtee M, Glazer A M. Acta Crystallographica Section A Foundations of Crystallography, 2010, 32(3), 434.
44 Tellier J, Malic B, Dkhil B, et al. Solid State Sciences, 2009, 11, 320.
45 Wu J, Xiao D, Wang Y, et al. Journal of Applied Physics, 2008, 103(2), 115.
46 Wu J, Xiao D, Wang Y, et al. Journal of the American Ceramic Society, 2010, 91(7), 2385.
47 Zhang Q, Li H T, Shang P P. Rare Metals, 2010, 29(2), 220.
48 Jing L, Zhu J, Wang M, et al. Ceramics International, 2012, 38(S1), S347.
49 Zhang R, Yang H, Jiang M, et al. Journal of Guilin University of Electronic Technology, 2019, 39(5), 425.
50 Jia M M, Ma J. Advanced Materials Research, 2014, 887-888, 299.
51 Zhao X K, Zhang B P, Qin H X, et al. China Sciencepaper, 2013, 8(2), 149(in Chinese).
赵笑昆, 张波萍, 秦海霞, 等. 中国科技论文, 2013, 8(2), 149.
52 Zuo R Z, Fu J. Journal of the American Ceramic Society, 2011, 94(5), 1467.
53 Yi C, Xue D, Yu M, et al. Physics Letters A, 2016, 380(37), 2974.
54 Wang R P, Bando H, Kidate M, et al. Japanese Journal of Applied Phy-sics, 2011, 50(3), 1.
55 Liang W, Wu W, Xiao D, et al. Journal of Materials Science, 2011, 46(21), 6871.
56 Tao H, Xiao D, Chao L, et al. Ceramics International, 2014, 40(2), 2731.
57 Liu C, Xiao D, Huang T, et al. Materials Letters, 2014, 120(1), 275.
58 Ogawa H, Iida D, Takahashi S, et al. Ferroelectrics, 2016, 497(1), 52.
59 Zhang M H, Wang K, Zhou J S, et al. Acta Materialia, 2017, 122, 344.
60 Luo J, Zhang S W, Zhou Z, et al. Journal of the American Ceramic Society, 2019, 102(5), 2770.
61 Kim B H, Yang S A, Lee M K, et al. Ceramics International, 2017, 43(17), 15880.
62 Zuo R Z, Fang X S, Ye C. Applied Physics Letters, 2007, 90(9), 92904.
63 Zhang S, Ru X, Shrout T R, et al. Solid State Communications, 2007, 141(12), 675.
64 Lin D M, Kwok K W, Lam K H, et al. Journal of Applied Physics, 2007, 101(7), 074111.
65 Zhang S J, Xia R, Shrout T R, et al. Journal of Applied Physics, 2006, 100(10), 104108.
66 Wu J G, Xiao D Q, Wang Y Y, et al. Journal of Applied Physics, 2008, 103(2), 115.
67 Huang X L, Xiao D Q, Wu J G, et al. Ferroelectrics, 2009, 385(1), 6108.
68 Cheng X, Wu J, Wang X, et al. Dalton Transactions, 2014, 43(9), 3434.
69 Zhang S, Ru X, Shrout T R. Applied Physics Letters, 2007, 91(13), 132913.
70 Zhang S, Ru X, Shrout T R, et al. Solid State Communications, 2007, 141(12), 675.
71 Hu Y B, Liu X Y, Jiang M H, et al. Journal of Materials Science: Materials in Electronics, 2013, 24(1), 331.
72 Wang Y Y, Wu J G, Xiao D Q, et al. Jorunal of Functional Materials, 2007, 38(2), 724(in Chinese).
王媛玉, 吴家刚, 肖定全, 等. 功能材料, 2007, 38(2), 724.
73 Xing J, Chen H, JiangL, et al. Nano Energy, 2021, 84(8), 105900.
74 Pan D, Guo Y, Zhang K, et al. Journal of Alloys & Compounds, 2017, 693, 950.
75 Wang Y. Journal of Electroceramics, 2008, 21(21), 629.
76 Lei C, Ye Z G. Applied Physicsletters, 2008, 93(4), 223.
77 Guo Y, Kakimoto K I, Ohsato H. Applied Physics Letters, 2004, 85(18), 4121.
78 Malic B, Bernard J, Holc J, et al. Journal of the European Ceramic Society, 2005, 25(12), 2707.
79 Zuo RZ, Fu J, Lv D Y, et al. Journal of the American Ceramic Society, 2010, 93(9), 2783.
80 Lin D, Kwok K W, Chan H L W. Applied Physics A, 2008, 91(1), 167.
81 Wang X, Wu J, Cheng X, et al. Ceramics International, 2013, 39(7), 8021.
82 Shen Z Y, Li J F, Wang K, et al. Journal of the American Ceramic Society, 2010, 93(5), 1378.
83 Wu J G, Wang Y Y, Xiao D Q, et al. Applied Physics Letters, 2007, 91, 132914.
84 Wang XP, Wu J G, Xiao D Q, et al. Journal of the American Chemical Society, 2014, 136(7), 2905.
85 Lee J K, Kim J H, Cho J H, et al. Ceramics International, 2012, 38(S1), S339.
86 Yong G, Zhang J, Qing Y, et al. Journal of the American Ceramic Society, 2011, 94(9), 2968.
87 Dambekalne M, Antonova M, Livinsh M, et al. Integrated Ferroelectrics, 2010, 102(1), 52.
88 Jia K L. Preparation and size effect of niobate-based lead-free piezoelectric material. Master’s Thesis, China University of Petroleum, China, 2016(in Chinese).
贾凯丽. 铌酸盐基无铅压电材料的可控制备与尺寸效应研. 硕士学位论文, 中国石油大学, 2016.
89 Zhou Z Y, Ding C, Piao Z Y, et al. Journal of Manufacturing Processes, 2021, 71, 653.
90 Zhou Z Y, Zheng Q Y, Piao Z Y, et al. Journal of Materials Research and Technology, 2021, 13, 1068.
91 Arilt G. Ferroelectrics, 1990, 104(1), 217.
92 Zheng P, Zhang J L, Tan Y Q, et al. Acta Materialia, 2012, 60(13-14), 5022.
93 Ghayour H, Abdellahi M. Powder Technology, 2016, 291, 84.
94 Huan Y, Wang X H, Fang J, et al. Journal of the European Ceramic Society, 2014, 34(5), 1445.
95 Akdogan E K. In:Handbook of low and high dielectric constant materials and their applications, Leonard M R, Safari A, ed. , Elsevier, Japan, 1999, pp. 61.
96 Polotai A V, Ragulya A V, Randall C A. Ferroelectrics, 2003, 288, 93.
97 Wang X, Deng X, Wen H, et al. Applied Physics Letters, 2006, 89(16), 162902.
98 Kamel T M, With G D. Journal of the European Ceramic Society, 2008, 28(4), 851.
99 Pramaink R, Sahukar M K, Mohan Y, et al. Ceramics International, 2019, 45(5), 5731.
100 Yu T, Shen Z X, Toh W S, et al. Journal of Applied Physics, 2003, 94(1), 618.
101 Shiratori Y, Magrez A, Pithan C. Journal of the European Ceramic Society, 2005, 25(12), 2075.
102 Yang W W, Li P, Wu S H, et al. Advanced Electronic Materials, 2019, 5(12), 1900570.
103 Cen H Y, Yu Y, Zhao P Y, et al. Journal of Materials Chemistry C, 2019, 7(5), 1379.
[1] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[2] 宋恩鹏, 靳权, 刘钊, 陈奋华, 蔡克. 自组装烧结法可控合成钛酸钡微纳米陶瓷的效果和适用范围研究[J]. 材料导报, 2023, 37(17): 22010205-6.
[3] 李雪伍, 周龙龙, 黄艳斐, 郭伟玲, 邢志国, 王海斗, 呼帅邦. 铌酸钾钠压电陶瓷制备工艺研究进展[J]. 材料导报, 2023, 37(11): 21070049-9.
[4] 宋牙牙, 黄艳斐, 郭伟玲, 邢志国, 王海斗, 吕振林, 张执南. 铌酸钾钠基无铅压电陶瓷掺杂改性的研究进展[J]. 材料导报, 2022, 36(5): 21030094-10.
[5] 孙赫男, 关岩, 毕万利, 孙美硕. 烧结氧化镁粉的晶体特征对磷酸镁水泥力学性能的影响[J]. 材料导报, 2022, 36(19): 20120126-6.
[6] 刘艳辉, 马鸣龙, 张奎, 李兴刚, 李永军, 石国梁, 袁家伟. 镁合金电磁屏蔽性能的研究进展[J]. 材料导报, 2022, 36(18): 20070297-6.
[7] 谢功园, 王轶, 陈宇强, 刘文辉, 潘素平, 宋宇峰, 刘阳, 谭欣荣. 换向轧制对铜晶粒尺寸高温热稳定性的影响[J]. 材料导报, 2022, 36(18): 21010236-7.
[8] 董万龙, 曹睿, 蒋勇, 杨飞, 黄义芳, 徐晓龙, 陈剑虹. Cr-Mo-V耐热钢焊条电弧焊焊缝金属低温冲击韧性研究[J]. 材料导报, 2022, 36(15): 20120001-5.
[9] 姚三成, 丁毅, 赵海, 江波, 刘学华, 方政. 中碳微合金钢的断裂韧性与显微组织的关系[J]. 材料导报, 2020, 34(Z1): 452-456.
[10] 何承绪, 马光, 陈新, 杨富尧, 程灵, 杨勇杰, 胡卓超, 孟利. 低温薄规格取向硅钢初次再结晶组织对二次再结晶行为的影响[J]. 材料导报, 2020, 34(Z1): 457-461.
[11] 秦芳诚, 齐会萍, 李永堂, 亓海全. 离心铸造Q235B钢环件热辗扩过程中的组织演变[J]. 材料导报, 2020, 34(12): 12132-12138.
[12] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[13] 俞良良, 张郑, 王快社, 王文, 贾少伟. 搅拌摩擦加工对AZ31镁合金微观组织及力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1289-1293.
[14] 何承绪, 杨富尧, 孟利, 刘洋, 高洁, 马光, 韩钰, 陈新. 薄规格取向硅钢中晶粒取向和尺寸对Goss晶粒异常长大的影响[J]. 《材料导报》期刊社, 2018, 32(4): 606-610.
[15] 丁雨田,孟斌,高钰璧,高鑫,豆正义,马元俊. 固溶处理对GH3625合金板材组织及性能的影响[J]. 《材料导报》期刊社, 2018, 32(2): 243-248.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed