Please wait a minute...
材料导报  2023, Vol. 37 Issue (11): 21100048-5    https://doi.org/10.11896/cldb.21100048
  无机非金属及其复合材料 |
单原子铁在硫化钼上的组装及电催化析氢
秦超, 张鑫, 周奕伦, 孟则达, 刘守清
苏州科技大学化学与生命科学学院,江苏省环境功能材料重点实验室,江苏 苏州 215009
Assembly of Single-atom Iron on Molybdenum Disulfide and Electrocatalytic Hydrogen Evolution Reaction
QIN Chao, ZHANG Xin, ZHOU Yilun, MENG Zeda, LIU Shouqing
School of Chemistry and Life Science, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
下载:  全 文 ( PDF ) ( 5165KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 贵金属Pt具有最高的析氢活性,但其高昂的价格限制了大面积推广应用。因此,研究开发高活性、低成本的析氢电催化材料,对发展氢能产业具有重要意义。利用二步水热反应法成功制备单原子铁-硫化钼(Fe-MoS2)电催化材料,并采用X-射线粉末衍射(XRD)、高角环形暗场扫描透射电子显微镜(HAADF-STEM)成像技术、能量色散X射线光谱(EDX)、电子能谱测定(XPS)对Fe-MoS2进行了表征。XRD结果表明,所制备Fe-MoS2样品的粉末衍射曲线与晶态2H-MoS2的标准卡(JCPDS 37-1492)相一致,表明Fe-MoS2与2H-MoS2具有相同的晶型结构;球差电镜分析表明,铁单原子均匀分布于MoS2表面;EDX与XPS分析进一步表明铁单原子存在于MoS2结构中。采用线性扫描伏安(LSV)法研究了Fe-MoS2的析氢性能。结果表明,最佳条件下制备的Fe-MoS2,其析氢过电位在电流密度为10 mA/cm2时仅为101 mV,而纯MoS2在相同条件下的析氢过电位为462 mV, 其过电位降低了361 mV;纯MoS2的塔菲尔斜率为433 mV/dec,而单原子Fe-MoS2的塔菲尔斜率仅为64 mV/dec。以乙二胺四乙酸(EDTA)和F-离子为探针分子,测试析氢电催化活性位点。结果表明,在KOH溶液中加入强配位能力的EDTA,其析氢过电位迅速升高,显示铁单原子是析氢电催化剂。机理研究表明,Fe-MoS2的析氢机理为Volmer-Heyrovsky机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦超
张鑫
周奕伦
孟则达
刘守清
关键词:  铁单原子  硫化钼  组装  电催化剂  析氢    
Abstract: The precious metal Pt has the highest hydrogen evolution activity, but its high price limits its widespread application. Therefore, the research and development of high-activity and low-cost hydrogen evolution electrocatalytic materials is of great significance to the development of the hydrogen energy industry. In this work, a two-step hydrothermal reaction method was used to successfully assemble single-atoms of Fe on molybdenum sulfide, prepared ofresulting in single-atoms of Fe on MoS2 to form Fe-MoS2 electrocatalytic hydrogen evolution material. X-ray powder diffraction (XRD), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), energy dispersive X-ray spectroscopy (EDX) and electron spectroscopy (XPS) were used to characterize and analyze the synthesized Fe-MoS2. XRD results showed that the powder diffraction patterns of the as-synthesized Fe-MoS2 sample are consistent with that of crystalline 2H-MoS2 (JCPDS 37-1492), indicating that Fe-MoS2 and 2H-MoS2 have the same crystal structure;Spherical aberration electron microscope displayed single-atoms of iron were uniformly dispersed on MoS2;EDX and XPS analysis further showed that the single iron atoms exist on the MoS2 structure.The hydrogen evolution performance of Fe-MoS2 was studied by linear sweep voltammetry (LSV).The results showed that the Fe-MoS2 synthesized under the optimal conditions has a hydrogen evolution overpotential of only 101 mV at the current density of 10 mA·cm-2, whereas the hydrogen evolution overpotential of pure MoS2 under the same conditions is 462 mV, its overpotential is reduced by 361 mV. The Tafel slope of pure MoS2 is 433 mV/dec, while that of single-atom Fe-MoS2 is only 64 mV/dec. EDTA and F-ion were used as probe molecules to test the active sites of hydrogen evolution, the results show that the hydrogen evolution overpotential rises rapidly, when EDTA and F ions were added to 1.0 mol/L KOH solution. It is concluded that single atoms of iron are active sites for HER. In addition, studies have shown that the hydrogen evolution mechanism of single-atom Fe-MoS2 follows the Volmer-Heyrovsky mechanism.
Key words:  single-atom iron    molybdenum disulfide    assembly    electrocatalyst    hydrogen evolution reaction
出版日期:  2023-06-10      发布日期:  2023-06-19
ZTFLH:  TK91  
基金资助: 国家自然科学基金(21576175)
通讯作者:  刘守清,通信作者,苏州科技大学教授,分别于武汉大学和南京大学获得理学硕士学位和博士学位,2003—2004年在日本国立物质材料研究所从事博士后研究。现已在Carbon、Chemical Engineering Journal、Journal of Hazardous Materials、Electrochimica Acta、Biosensors & Bioelectronics、《物理化学》《催化学报》等期刊上发表 80多篇学术论文。申请国家发明专利52项,获得授权发明专利35项,转让专利10项。刘守清教授是国家自然科学基金委员会基金项目函评专家、教育部学位中心学位论文评审专家、国家高新技术企业评审专家。其团队的研究方向和研究领域为电催化材料制氢、燃料电池、可充电电池、电化学发光、光催化及压电催化等。   
作者简介:  秦超,苏州科技大学硕士研究生。2015—2019年就读于辽宁科技大学金属材料专业,本科期间多次荣获校级奖学金、校三好学生等荣誉称号,并获得学士学位。2019年至今,在苏州科技大学攻读材料学专业硕士研究生,其研究方向是电催化材料的合成与电催化制氢。现已发表一篇期刊论文。
引用本文:    
秦超, 张鑫, 周奕伦, 孟则达, 刘守清. 单原子铁在硫化钼上的组装及电催化析氢[J]. 材料导报, 2023, 37(11): 21100048-5.
QIN Chao, ZHANG Xin, ZHOU Yilun, MENG Zeda, LIU Shouqing. Assembly of Single-atom Iron on Molybdenum Disulfide and Electrocatalytic Hydrogen Evolution Reaction. Materials Reports, 2023, 37(11): 21100048-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100048  或          http://www.mater-rep.com/CN/Y2023/V37/I11/21100048
1 Li C,Baek J B. ACS Omega, 2020, 5, 31.
2 Kou Z K, Xi K, Pu Z H, et al. Nano Energy, 2017, 36, 374.
3 Chung D Y, Jun S W, Yoon G, et al. Journal of the American Chemical Society, 2017, 139, 6669.
4 Zang M J, Xu N, Cao G X, et al. ACS Catalysis, 2018, 8, 5062.
5 Deng S J, Zhong Y, Zeng Y X, et al. Advanced Materials,2017, 29, 1700748.
6 Shit S, Chhetri S, Jang W, et al. ACS Applied Materials & Interfaces, 2018, 10, 27712.
7 Tai G A, Xu M P, Hou C, et al. ACS Applied Materials & Interfaces, 2021, 13(51), 60987.
8 Silva L, Brena B, Araujo M, et al.The Journal of Physical Chemistry C,2020,124,16, 8726.
9 Wang J P, Guan Y F, Zhang Q. Applied Surface Science,2022,582, 152481.
10 Zhou W D,Chen M,Guo M, et al. Nano Letters,2020, 20(4), 2923.
11 Jiang J B,Cong H S,Huang X, et al. International Journal of Hydrogen Energy,2022,47,2947.
12 Seh Z, Kibsgaard J, Dickens C F, et al. Science, 2017, 355, 4998.
13 Yang C Y. ACS Nano, 2021, 15, 11014.
14 Xue J Y, Li F L, Zhao Z Y, et al. Inorganic Chemistry, 2019, 58(16),11202.
15 Morozan A, Johnson H, Roiron C, et al. ACS Catalysis, 2020, 10, 14336.
16 Escalera-López D, Niu Y B, Yin J L, et al. ACS Catalysis, 2016, 6(9), 6008.
17 Tang J Y, Chu Y Y, Wang K X, et al. ACS Applied Energy Materials, 2021, 4(3), 2300.
18 Pan J, Song C S, Wang X, et al. Inorganic Chemistry Frontiers, 2017, 4, 1895.
19 Wang C, Wang S, Lyu J, et al. International Journal of Electrochemical Science, 2019, 14, 9805.
20 Zhang L Y, Li M, Zou A Q, et al. ACS Applied Energy Materials, 2019, 2(1), 493.
21 Shen S H, Jiang J G, Guo P H, et al. Nano Energy, 2012, 1, 732.
22 Du C C, Huang H, Jian J,et al. Applied Catalysis, 2017, 538, 1.
23 Zhang X, Liu W X, Zhou Y W, et al. Journal of Electroanalytical Chemistry, 2021, 894(1),115359.
24 Qiao W, Xu W, Xu X Y, et al. ACS Applied Energy Materials, 2020, 3, 2315.
25 Shi Y, Zhou Y, Yang D R, et al. Journal of the American Chemical Society, 2017, 139, 15479.
26 Cong W T, Tang Z, Zhao G, et al. Scientific Reports, 2015, 5, 9361.
27 Huang L Z, Wei X L, Gao E L,et al. Applied Catalysis,B:Environ, 2020, 268(5), 118459.
28 Su H Y, Chen L L, Chen Y Z, et al. Angewandte Chemie International Edition, 2020, 59, 20411.
29 Bai L Z, Wang Y H, Zhang Z Y, et al. Materials Reports, 2017, 31(16), 12(in Chinese).
白利忠, 王彦辉, 张增一, 等. 材料导报, 2017, 31(16), 12.
30 Xu F Q, Gan Y P, Luo J M,et al. Materials Reports, 2016, 30(20), 12(in Chinese).
徐飞强, 甘永平, 罗剑敏, 等. 材料导报, 2016, 30(20), 12.
31 Li Z H, Jiang Z Z, Zhou W D, et al. Inorganic Chemistry, 2021, 60(3), 1991.
32 Dong T, Zhang X, Wang P, et al. Electrochimica Acta, 2020, 338, 135885.
33 Xue J Y, Li F L, Zhao Z Y, et al. Inorganic Chemistry, 2019, 58, 11202.
34 Liu S Q, Huang K Z, Liu W X, et al. New Journal of Chemistry,2020,44,14291.
35 Dai X, Du K, Li Z, et al. ACS Applied Materials & Interfaces,2015,7,27242.
36 Song S,Li Y,Shi Y,et al. Journal of Electroanalytical Chemistry,2021,115986.
37 Krstajic' N, Popovic' M, Grgur B, et al. Journal of Electroanalytical Che-mistry, 2001, 512, 16.
38 Finn S, Finn H T. Macdonald J E. ACS Applied Materials & Interfaces,2016, 8, 25185.
39 Vij V, Sultan S, Harzandi A M. ACS Catal, 2017, 7, 7196.
[1] 刘恒昌, 陈凯. 两面神胶束的构筑及应用[J]. 材料导报, 2023, 37(10): 21120086-8.
[2] 张壹霖, 腾凡, 高庆, 杨婷婷. 基于RAFT调控的聚合诱导自组装研究进展[J]. 材料导报, 2022, 36(Z1): 22030070-5.
[3] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[4] 杨方平, 宋子元, 殷黎晨, 唐浩宇, 程建军. 聚氨基酸材料的研究进展[J]. 材料导报, 2022, 36(3): 21080287-18.
[5] 刘佳琪, 杨庆浩. 氧还原电催化剂的研究进展[J]. 材料导报, 2022, 36(24): 20110226-6.
[6] 刘均澔, 李文兵, 龚韬, 魏婉婷, 钱坤. 形状记忆微/纳米图案的设计、应用和发展[J]. 材料导报, 2022, 36(23): 20100218-10.
[7] 李慧姝, 卢豪, 顾宇红. 聚合物刷在溶剂中的自组装行为及弹性响应[J]. 材料导报, 2022, 36(15): 21030320-5.
[8] 姚红蕊, 尹旭, 王娜, 齐舵, 姜岩. 二维纳米材料在金属防腐领域的应用研究进展[J]. 材料导报, 2022, 36(10): 20080261-9.
[9] 韦亦泠, 邓文江, 金彩虹, 李慧, 王传明, 孟铁宏, 张文娟, 赵鸿宾, 帅光平, 杨政敏, 李春荣, 胡先运. 高荧光量子产率的二硫化钼量子点制备及荧光性能研究[J]. 材料导报, 2021, 35(z2): 13-17.
[10] 武彧, 刘家成. 不同类型锌卟啉自组装染料敏化太阳能电池[J]. 材料导报, 2021, 35(z2): 479-482.
[11] 薛敏, 张祥, 刘璐, 常文浩, 李蓓蓓. 双组分超分子凝胶材料的形成机理及流变性能[J]. 材料导报, 2021, 35(8): 8201-8206.
[12] 张晓君, 马梁, 孙迎辉. 基于电催化析氧反应的硫化物催化剂研究进展[J]. 材料导报, 2021, 35(23): 23040-23049.
[13] 朱浩彤, 刘玲伟, 闫铭, 张鸿, 郭静, 夏英. 纤维气凝胶的分类、制备工艺及应用现状[J]. 材料导报, 2021, 35(23): 23057-23067.
[14] 卢爽, 刘琳, 谢锦印, 武亚琪, 邢锦娟. 2-氨基苯并咪唑缩对甲基苯甲醛席夫碱的合成及缓蚀性能[J]. 材料导报, 2021, 35(20): 20195-20199.
[15] 余先纯, 孙德林, 计晓琴, 王张恒. 木质素基碳纳米片组装木陶瓷电极的结构调控与电化学储能[J]. 材料导报, 2021, 35(2): 2012-2018.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed