Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 22030154-5    
  无机非金属及其复合材料 |
含TiN阻氚过渡层新型第一壁的氘渗透实验研究
张舒婷, 黄向玫, 赵栋烨, 洪志浩, 曾晓晓, 才来中
核工业西南物理研究院,成都 610041
Deuterium Permeation Test of a Conceptual First Wall Containing a TiN Interlayer
ZHANG Shuting, HUANG Xiangmei, ZHAO Dongye, HONG Zhihao, ZENG Xiaoxiao, CAI Laizhong
Southwestern Institute of Physics, Chengdu 610041, China
下载:  全 文 ( PDF ) ( 8281KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了更好地控制氚滞留和改善氚循环,同时确保聚变装置的氚安全许可,第一壁的阻氚性能显得格外重要。一种含氮化钛(TiN)阻氚过渡层的新型第一壁结构被提出,由化学气相沉积钨(CVD-W)作为面向等离子体材料(PFM),低活化铁素体马氏体钢(RAFM)CLF-1作为基体材料,TiN作为过渡层,该过渡层兼具结合功能和阻氚功能。为了研究该第一壁结构的阻氚性能,本工作制备了具有不同基材粗糙度的样品,采用气相驱动渗透(GDP)实验对样品进行氘渗透测试,采用配有能谱仪(EDS)的扫描电镜(SEM)及X射线衍射仪(XRD)对样品的CVD-W表面、TiN过渡层及样品截面进行微观形貌观察及成分分析。结果表明,氘的渗透率与温度满足Arrhenius关系。相较于在CLF-1钢中,氘在含TiN阻氚过渡层第一壁结构中有更低的渗透率,对氘有明显的阻挡效果。基材粗糙度较大的样品在渗透过程中发生了CVD-W的碎裂和脱落以及TiN过渡层的开裂,使其氘渗透率相对更大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张舒婷
黄向玫
赵栋烨
洪志浩
曾晓晓
才来中
关键词:  第一壁  阻氚  氘的渗透  TiN  CVD-W  CLF-1钢    
Abstract: From the standpoints of tritium self-sufficiency and the safety regulation, the control of the tritium inventory of the first wall is crucial. A conceptual first wall of Tritium barrier transition layer was designed and fabricated, consisting of CVD-W as plasma-facing material, reduced activation ferritic/martensitic CLF-1 as substrate and a TiN interlayer that benefited the resistance of tritium permeation and strengthened the bon-ding of CVD-W and CLF-1. The conceptual first wall samples with different substrate roughnesses were fabricated and analyzed in this work. The GDP tests were performed on the conceptual first wall samples and bare CLF-1. The morphology and elements distributions were characterized by employing the XRD and the SEM equipped with EDS. The results indicated that the first wall samples containing TiN interlayer could reduce the deuterium permeation crucially compared with the bare CLF-1. The permeability of the deuterium follows the Arrhenius relationship with the temperature. Sample T2 with a rougher substrate surface had a relatively higher deuterium permeability which was caused by the broken and peel-off of the CVD-W layer and the cracks in the TiN layer during the GDP test.
Key words:  first wall    tritium permeation barrier    deuterium permeation    TiN    CVD-W    CLF-1 steel
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TL62+7  
基金资助: 国家磁约束核聚变能发展研究专项(2019YFE031203;2019YFE031204);国家自然科学基金(11905049)
通讯作者:  cailz@swip.ac.cn   
作者简介:  张舒婷,2014年6月于四川大学获得工学学士学位。现为核工业西南物理研究院硕士研究生,在才来中研究员指导下进行研究。目前主要研究领域为等离子体与材料相互作用。
才来中,研究员,1998年获清华大学学士学位,2001年获清华大学硕士学位,2008年获美国加州大学圣地亚哥分校博士学位。2009年起在核工业西南物理研究院工作。主要从事等离子体与材料相互作用以及边缘等离子体检测与偏滤器物理等方面的研究。
引用本文:    
张舒婷, 黄向玫, 赵栋烨, 洪志浩, 曾晓晓, 才来中. 含TiN阻氚过渡层新型第一壁的氘渗透实验研究[J]. 材料导报, 2022, 36(Z1): 22030154-5.
ZHANG Shuting, HUANG Xiangmei, ZHAO Dongye, HONG Zhihao, ZENG Xiaoxiao, CAI Laizhong. Deuterium Permeation Test of a Conceptual First Wall Containing a TiN Interlayer. Materials Reports, 2022, 36(Z1): 22030154-5.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/22030154
1 Cai L, Zeng X, Liu M, et al. Nuclear Fusion, 2020, 60(9), 096015.
2 Hirai T, Kreter A, Linke J,et al. Fusion Engineering and Design, 2006, 81(1-7), 175.
3 Lian Y, Liu X, Xu Z,et al. Fusion Engineering and Design, 2013, 88(9-10), 1694.
4 Wang P H, Chen J M, Xu Z Y,et al. In: Conference Record of the 23rd Fusion Energy Conference. Daejeon, Republic of Korea,2010, pp. 9.
5 Lv Y, Song J, Lian Y,et al. Journal of Nuclear Materials, 2015, 457, 317.
6 Checchetto R, Bonelli M, Gratton L M,et al. Surface and Coatings Technology, 1996, 83(1-3), 40.
7 Sabbioni A, Laidani N. In: Conference Record of the 19th Symposium on Fusion Technology. Lisbon, Portugal, 1997, pp. 1447.
8 Causey R A, Karnesky R A, San Marchi C. In:Tritium barriers and tri-tium diffusion in fusion reactors, Elsevier, Netherlands, 2012, pp. 540.
9 王佩璇, 宋家树.材料中的氦及氚渗透, 国防工业出版社, 2002, pp. 71.
10 Serra E, Rigal E, Benamati G. Fusion Engineering and Design, 2000, 49-50, 675.
11 Ogorodnikova O V. Journal of Nuclear Materials, 2000, 277(2-3), 130.
12 洪志浩, 冯勇进, 王龙, 等.核化学与放射化学, 2021, 43(3), 238.
13 Wang J, Li Q, Xiang Q Y,et al. International Journal of Hydrogen Energy, 2016, 41(2), 1326.
14 Xu Y P, Lu T, Li X C,et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 388, 5.
15 Chen Z, Li Y, Cheng L,et al. Nuclear Fusion, 2021, 61(12), 126024.
16 Forcey K S, Perujo A, Reiter F,et al. Journal of Nuclear Materials, 1993, 200(3), 417.
17 Xu Y, Hirooka Y. Nuclear Fusion, 2018, 58(7), 076005.
[1] 黄雪丽, 谭君国, 张腾飞, 莫锦君, 高则翠, 钟星, 王启民. 钛合金表面TiN/CrN纳米多层薄膜的制备及耐磨、耐腐蚀性能[J]. 材料导报, 2021, 35(4): 4139-4143.
[2] 杨宏宇, 吴宁, 王玉, 朱超, 张一帆, 陈利. 复合材料Tufting缝合技术的研究进展[J]. 材料导报, 2021, 35(23): 23219-23228.
[3] 刘盼, 朱彬, 吕东风, 崔帅, 崔燚, 魏颖娜, 魏恒勇, 卜景龙. 多级结构CoNiO2/TiN复合纤维的制备及电化学性能[J]. 材料导报, 2020, 34(10): 10024-10029.
[4] 张永皞, 孟玉堂, 范啟超, 孙明艳, 黄姝珂. “近单相”型NiTiNb形状记忆合金研究进展[J]. 材料导报, 2019, 33(19): 3272-3276.
[5] 程国君, 产爽爽, 陈晨, 钱家盛, 丁国新, 王周锋. 改性剂对TiN/PS纳米复合材料流变行为的影响[J]. 材料导报, 2019, 33(14): 2444-2449.
[6] 夏法锋, 杨安娜, 马春阳. 工艺参数对脉冲电沉积Ni-TiN纳米镀层微观组织和性能的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2448-2451.
[7] 黄本生, 高钰枭, 陈鹏, 李杰, 李光文. 高频感应熔覆TiN/Co涂层组织及性能研究[J]. 《材料导报》期刊社, 2018, 32(13): 2272-2277.
[8] 贺春林,高建君,王苓飞,马国峰,刘岩,王建明. N2流量对反应共溅射TiN/Ni纳米复合膜结构和结合强度的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2038-2042.
[9] 庞宗旭, 朱荣, 陈培敦, 王俊海. 镁铝尖晶石固溶体成分对TiN析出行为的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 118-124.
[10] 贺志荣, 吴佩泽, 刘康凯, 冯辉, 王家乐. Ni含量对激冷贫镍TiNi形状记忆合金薄带相变行为的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 17-20.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed