Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 22020133-6    
  无机非金属及其复合材料 |
单层石墨烯电子结构的调控策略和对接的研究进展
梁泽芬1, 林小军1, 纳仁花2, 牛玉艳1, 王亮1
1 兰州工业学院机电工程学院,兰州 730050
2 兰州工业学院基础部,兰州 730050
Research Progress on the Control Strategy of Single Layer Graphene Electronic Structure and Its Joining
LIANG Zefen1, LIN Xiaojun1, NA Renhua2, NIU Yuyan1, WANG Liang1
1 Mechanical and Electrical Engineering, Lanzhou Institute of Technology, Lanzhou 730050, China
2 Department of Basic Sciences, Lanzhou Institute of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 4614KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯因其出色的力学、物理和化学等性能在半导体、储氢、医学和生物传感器等方面表现出良好的应用前景,近年来成为人们的研究焦点,但是石墨烯特殊的电子结构使其在有效应用的过程中存在一定的局限性。本文综述了优化石墨烯电子结构的调控策略和单层石墨烯对接的研究进展,重点分析了边缘形状、缺陷和掺杂、机械应变对石墨烯电学性质的影响;介绍了单层石墨烯对接的方法和相关电学性质;最后对石墨烯的对接和应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁泽芬
林小军
纳仁花
牛玉艳
王亮
关键词:  石墨烯  电子结构  调控  对接    
Abstract: The graphene has shown good application prospects in semiconductors, hydrogen storage, medicine and biosensors duo to its excellent mechanical, physical and chemical properties. In recent years, it has become the focus of research. However, graphene has certain limitations in the process of effective application due to its special electronic structure. This review summarizes the control strategies for optimizing the electronic structure of graphene and the research progress of single-layer graphene docking, focusing on the effects of edge shape, defects and doping, and mechanical strain on the electrical properties of graphene. The method of single-layer graphene joining and related electrical properties are introduced. Finally, the joining and application of graphene are prospected.
Key words:  graphene    electronic structure    controlation    joining
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  O469  
基金资助: 甘肃省自然科学基金(20JR10RA278);甘肃省高校创新能力提升项目(2020A-145;2020B-224);兰州工业学院青年科技创新项目(2018K-011);甘肃省高等学校产业支撑项目(2020C-30)
通讯作者:  liangzefen369@126.com   
作者简介:  梁泽芬,兰州工业学院机电工程学院副教授。2006年兰州理工大学材料科学与工程学院金属材料专业本科毕业,2009年兰州理工大学材料学专业硕士毕业后到兰州工业学院工作至今,2021年兰州理工大学材料加工工程专业博士毕业。目前主要从事计算材料学和激光加工等方面的研究工作,在国内外学术期刊发表论文20余篇,包括Journal of Physics Condensed Matter, The European Physical Journal D等。
引用本文:    
梁泽芬, 林小军, 纳仁花, 牛玉艳, 王亮. 单层石墨烯电子结构的调控策略和对接的研究进展[J]. 材料导报, 2022, 36(Z1): 22020133-6.
LIANG Zefen, LIN Xiaojun, NA Renhua, NIU Yuyan, WANG Liang. Research Progress on the Control Strategy of Single Layer Graphene Electronic Structure and Its Joining. Materials Reports, 2022, 36(Z1): 22020133-6.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/22020133
1 Hirsch A. Nature Materials, 2010, 9(11), 868.
2 Novoselov K S, Geim A, Morozov S, et al. Science, 2004, 306(5696), 666.
3 Barinov A, Malcioglu O B, Fabris S,et al. Journal of Physical Chemistry C, 2009, 113(21), 9009.
4 Balandin A A. Nature Materials, 2011, 10(8), 569.
5 Lee C, Wei X, Kysar J W,et al. Science, 2008, 321(5887), 385.
6 Huard B, Sulpizio J A, Stander N,et al. Physical Review Letters, 2007, 98(23), 236803.
7 Silvestrov P G, Efetov K B. Physical Review B Condensed Matter, 2008, 77(15), 1.
8 Ritter K A, Lyding J W. Nature Materials, 2009, 8(3), 235.
9 Brey L, Fertig H A. Physical Review B, 2006, 73(23), 235411.
10 Son Y W, Cohen M L, Louie S G. Physical Review Letters, 2006, 97(21), 139.
11 Nakada K, Fujita F, Dresselhaus G,et al. Physical Review B, 1996, 54(24), 17954.
12 Lu J Q, Wu J, Duan W,et al. Physical Review Letters, 2003, 90(15), 156601.
13 Choi S M, Jhi S H, Son Y W. Physical Review B: Condensed Matter, 2012, 81(8), 081407.
14 Sun L, Li Q, Ren H,et al. The Journal of Chemical Physics, 2008, 129(7), 074704.
15 Nguyen V H, Nguyen H V, Saint-Martin J, et al. Nanotechnology, 2015, 26, 115201.
16 Liao W H, Zhou B H, Wang H Y,et al. European Physical Journal B, 2010, 76(3), 463.
17 Chang Y, Albash T, Haas S. Physical Review B,2012, 86(12), 125402.
18 Pereira V M, Neto A H C, Peres N M R. Physical Review B, 2008, 80(4), 045401.
19 Bunch J S, Zande A M V D, Verbridge S S,et al. Science, 2007, 315(5811), 490.
20 Hod O, Scuseria G E. Nano Letters, 2009, 9(7), 2619.
21 Hu X, Xie X, Sun L. In: 2013 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2013, pp. 747.
22 Zhang J, Ong K P, Wu P. The Journal of Physical Chemistry C, 2010, 114(29), 12749.
23 Wei D C, Liu Y Q, Wang Y,et al. Nano Letters, 2009, 9(5), 1752.
24 Wang X R, Li X L, Zhang L,et al. Science, 2009, 324(5928), 768.
25 Jin N, Han J, Wang H,et al. International Journal of Hydrogen Energy, 2015, 40(15), 5126.
26 Leenaerts O, Partoens B, Peeters F M. Physical Review B, 2008, 77(12), 125416.
27 Zanella I, Guerini S, Fagan S B,et al. Physical Review B, 2008, 77(7), 073404.
28 Dalosto S D, Levine Z H. The Journal of Physical Chemistry C, 2008, 112(22), 8196.
29 Sun J T, Lu Y H, Chen W,et al. Physical Review B, 2010, 81(15), 155403.
30 Denis P A. Chemical Physics Letters, 2010, 492(4-6), 251.
31 Lherbier A, Blase X, Niquet Y M,et al. Physical Review Letters, 2008, 101(3), 036808.
32 Wu M, Cao C, Jiang J Z. Nanotechnology, 2010, 21(50), 505202.
33 Garcfa-Lastra J M. Physical Review B: Condensed Matter, 2010, 82(23), 2955.
34 Lu Y H, Chen W, Feng Y P,et al. Journal of Physical Chemistry B, 2009, 113(1), 2.
35 Ohta T, Bostwick A, Seyller T,et al. Science, 2006, 313(5789), 951.
36 Zhou Y, Wu J, He P,et al. Nanoscience and Nanotechnology Letters, 2015, 7(8), 630.
37 Mukherjee S, Kaloni T P. Journal of Nanoparticle Research, 2012, 14(8), 1.
38 Wei X, Wang M S, Bando Y,et al. ACS Nano, 2011, 5(4), 2916.
39 Kalbac M, Reina-Cecco A, Farhat H,et al. ACS Nano, 2010, 4(10), 6055.
40 Mattausch A, Pankratov O. Physical Review Letters, 2007, 99(7), 076802.
41 Giovannetti G, Khomyakov P, Brocks G,et al. Physical Review Letters, 2008, 101(2), 1676.
42 Srivastava P, Dhar S, Jaiswal N K. Graphene, 2014, 2(1), 1.
43 Zeng J, Chen K Q, He J, et al. Journal of Applied Physics, 2011, 109(12), 124502.
44 Biel B, Blase X, Triozon F,et al. Physical Review Letters, 2009, 102(9), 096803.
45 Biel B, Triozon F, Blase X, et al. Nano Letters, 2009, 9(7), 2725.
46 Tian Y L, Ren J F, Yue W W, et al. Chemical Physics Letters, 2017, 685(10), 344.
47 Li J, Zhang Z H, Qiu M,et al. Carbon, 2014, 80(8), 575.
48 Xing M, Fang W, Yang X,et al. Chemical Communications, 2014, 50(50), 6637.
49 Marconcini P, Cresti A, Triozon F,et al. ACS Nano, 2012, 6(9), 7942.
50 Wu M, Cao C, Jiang J Z. Nanotechnology, 2010, 21(50), 505202.
51 Deng X, Wu Y, Dai J,et al. Physics Letters A, 2011, 375(44), 3890.
52 Denis P A. Chemical Physics Letters, 2010, 492(4-6), 251.
53 Mirzadeh M, Farjam M. Journal of Physics Condensed Matter an Institute of Physics Journal, 2012, 24(23), 235304.
54 Dai J, Yuan J. Journal of Physics: Condensed Matter, 2010, 22(22), 225501.
55 Zhou Y, Wu J, He P,et al. Nanoscience and Nanotechnology Letters, 2015, 7(8), 630.
56 Rani P, Jindal V K. RSC Advances, 2013, 3(3), 802.
57 Yavari F, Kritzinger C, Gaire C,et al. Small, 2010, 6(22), 2535.
58 Giovannetti G, Khomyakov P, Brocks G,et al. Physical Review Letters, 2008, 101(2), 1676.
59 Wu X, Zhao H, Zhong M,et al. Materials Transactions, 2013, 54 (6), 940.
60 Zou R, Zhang Z, Xu K, et al. Carbon, 2012,50, 4965.
61 Ye X H, Huang T, Lin Z, et al. Carbon, 2013, 61(11), 329.
62 Wu X, Zhao H, Pei J, Yan D. Applied Physics Letters, 2017, 110, 133102 .
63 Gonzalez J, Guinea F, Herrero J. Physical Review B, 2009, 79(16), 165434.
64 Novaes F D, Rurali R and Ordejon P. ACS Nano, 2010, 4(12), 7596.
65 Ma K L , Yan X H , Guo Y D , et al. European Physical Journal B:Condensed Matter, 2011, 83(4), 487.
66 Lee J , Varshney V , Brown J S , et al. Applied Physics Letters, 2012, 100(18), 3166.
67 Dimitrakakis G K , Tylianakis E , Froudakis G E. Nano Letters, 2008, 8(10), 3166.
68 Lin J , Zhang C , Yan Z , et al. Nano Letters, 2013, 13(1), 72.
69 Hunley D P , Johnson S L , Stieha J K , et al. ACS Nano, 2011, 5(8), 6403.
70 Pei T, Xu H, Zhang Z, et al. Applied Physics Letters, 2011, 99(11), 113102
71 Neumann C, Volk C, Engels S, et al. Nanotechnology, 2013, 24(44), 444001.
72 Robert P T, Danneau R. New Journal of Physics, 2014, 16(1), 257.
73 Qiao J, Zhou L, Wei J. Chinese Physics B, 2017, 26(3), 036803.
[1] 徐良玉, 黄福祥, 龙敏, 邓鸿元, 陈剑. 过渡金属元素(X=Cr, Mn, Co, Ni, Zn, Zr, Nb, Ta)掺杂立方BaTiO3的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 21090275-5.
[2] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[3] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[4] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[5] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[6] 李格, 韩彬, 李美艳, 刘鹏, 李朝晖. 石墨烯增强金属基复合涂层的研究进展[J]. 材料导报, 2022, 36(8): 20080127-7.
[7] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[8] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[9] 蔡中盼, 田茂诚, 张冠敏. 不同层数和尺寸的石墨烯对润滑油热物性能的影响[J]. 材料导报, 2022, 36(3): 20100213-8.
[10] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[11] 姚红蕊, 尹旭, 王娜, 齐舵, 姜岩. 二维纳米材料在金属防腐领域的应用研究进展[J]. 材料导报, 2022, 36(10): 20080261-9.
[12] 李时春, 莫彬, 肖罡, 苏飞. 激光增材制造成形质量表征与调控研究进展[J]. 材料导报, 2022, 36(10): 20100127-9.
[13] 邵丹, 王美玲, 陈志炎, 高亚军, 庞欢. 碳材料在色素电化学传感中的研究进展[J]. 材料导报, 2021, 35(z2): 22-27.
[14] 蒋星宇, 王洁琼, 邱琳琳, 白冰, 金正飞, 梅德强, 杜平凡. 碳基纤维材料在能源领域的应用[J]. 材料导报, 2021, 35(z2): 470-478.
[15] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed