Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 22010043-6    
  金属与金属基复合材料 |
硬质合金废料电解回收钨及W(Ⅵ)在熔盐中的电化学行为
李亮星, 朱志城, 贾孟熹, 黄茜琳
江西理工大学能源与机械工程学院,南昌 330013
Recovery Tungsten from Cemented Carbide Waste by Electrolysis and Electrochemical Behavior of Tungsten Ions in Molten Salts
LI Liangxing, ZHU Zhicheng, JIA Mengxi, HUANG Xilin
School of Energy and Mechanical Engineering,Jiangxi University of Science and Technology, Nanchang 330013, China
下载:  全 文 ( PDF ) ( 6761KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硬质合金在机械制造等领域应用广泛,产生的硬质合金废料逐年增加,对硬质合金废料进行回收有利于节约资源、保护环境。采用循环伏安技术考察NaCl-KCl-Na2WO4熔盐体系中W(Ⅵ)的电化学行为,利用扫描电镜及X射线衍射技术研究电解电压对硬质合金废料阳极溶解形貌及组织结构变化的影响。结果表明:W(Ⅵ)在NaCl-KCl-Na2WO4熔盐体系中的电化学还原过程是准可逆的,反应受扩散控制,750 ℃时扩散系数为6.252×10-5 cm2·s-1。随着电解电压的增大,硬质合金废料表面形貌由颗粒团絮多孔状转变为蜂窝状,随后表面出现黑色块状物质。通过控制电解电压可以选择性分离回收硬质合金废料中的钨、钴金属,硬质合金废料中的钛优先于钨溶解,增大电压,更换阴极电解可得到纯钨产品。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李亮星
朱志城
贾孟熹
黄茜琳
关键词:  硬质合金废料  资源回收    熔盐电解  电化学行为    
Abstract: Cemented carbide is widely used, prodcing an increasing number of waste materials. Therefore,the recycling of cemented carbide waste is conducive to saving resources and protecting the environment. The electrochemical behaviour of W(Ⅵ) in the NaCl-KCl-Na2WO4 molten salt system was investigated by cyclic voltammetry(CV). The effect of electrolytic voltage on the morphology and microstructure of anodic dissolved alloy waste were studied by SEM and XRD. The results show that the electrochemical reduction process of W(Ⅵ) in the NaCl-KCl-Na2WO4 molten salt system is quasi-reversible and controlled by diffusion. The diffusion coefficient is 6.252×10-5 cm2·s-1 at 750 ℃. With the increase of electrolysis voltage, the surface morphology of cemented carbide waste changed from granular flocculent porous state to honeycomb, and then black lump-like substances appeared on the surface. The tungsten and cobalt metal in the cemented carbide scrap can be selectively separated and recycled by controlling the electrolysis voltage. The cobalt in the cemented carbide scrap is preferentially dissolved with tungsten, and changing cathode electrolysis by increasing voltage can refine pure tungsten products.
Key words:  cemented carbide scrap    resource recovery    tungsten    molten salt electrolysis    electrochemical behavior
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TF841.1  
基金资助: 江西省自然科学基金(20192BAB206019);江西省教育厅科学技术研究项目(GJJ180449)
通讯作者:  286401206@qq.com   
作者简介:  李亮星,江西理工大学能源与机械工程学院副教授、硕士研究生导师。2016年东北大学冶金学院有色金属冶金专业博士毕业。目前主要从事稀有金属资源高效开发与应用、高性能材料制备及应用、固体废弃物处理与温室气体减排等方面的研究工作。
黄茜琳,江西理工大学能源与机械工程学院实验师。2009年于江西理工大学材料与化学工程学院有色金属冶金专业硕士毕业。主要从事萃取冶金、有色金属二次资源综合回收利用等方面的研究工作。
引用本文:    
李亮星, 朱志城, 贾孟熹, 黄茜琳. 硬质合金废料电解回收钨及W(Ⅵ)在熔盐中的电化学行为[J]. 材料导报, 2022, 36(Z1): 22010043-6.
LI Liangxing, ZHU Zhicheng, JIA Mengxi, HUANG Xilin. Recovery Tungsten from Cemented Carbide Waste by Electrolysis and Electrochemical Behavior of Tungsten Ions in Molten Salts. Materials Reports, 2022, 36(Z1): 22010043-6.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/22010043
1 Shemi A, Magumise A, Ndlovu S,et al. Minerals Engineering, 2018, 122, 195.
2 陈颢,李剑波,羊建高.有色金属科学与工程,2012,3(5),18.
3 洪海侠,张颢, 张卫兵, 等.硬质合金, 2021, 38(1), 58.
4 So Y B, Jong S P, Jong H K,et al. Journal of the Air & Waste Management Association, 2021, 71(6), 711.
5 Srivastava R R, Lee J C, Bae M,et al. Journal of Materials Science, 2019, 54(1), 83.
6 谢小豪,王云, 汪艳亮, 等. 有色金属科学与工程, 2020, 11(2), 64.
7 Shibata J, Murayama N, Niinae M,et al. Journal of the Japan Institute of Metals, 2011, 75(11), 613.
8 刘柏雄, 杨高玲, 邝梦杰,等.稀有金属, 2020, 44(1), 26.
9 周新华,王力民,彭英健.硬质合金,2016,33(5), 356.
10 赵秦生.稀有金属与硬质合金, 2002, 30(3), 58.
11 Seo B, Kim S. International Journal of Mineral Processing, 2016, 151(10), 1.
12 Zhang L W, Nie Z R, Xi X L,et al. Metallurgical and Materials Transactions B, 2018, 49(1), 334.
13 邝海.稀有金属与硬质合金,2016, 44(5),79.
14 Eso O O. International Journal of Refractory Metals and Hard Materials, 2016, 54, 445.
15 Jung W G. Journal of Industrial and Engineering Chemistry, 2014, 20(4), 2384.
16 田亚斌,黄晶明,叶昌美,等.稀有金属, 2020, 44(9), 941.
17 杨斌,陈广军, 石安红, 等.材料导报:研究篇,2015,29(2), 68.
18 Zeiler B, Bartl A, Schubert W D. International Journal of Refractory Metals and Hard Materials, 2021, 98, 105546.
19 Li M, Xi X L, Liu Q Q, et al. Journal of Electroanalytical Chemistry, 2019, 833, 480.
20 冯乃祥, 孙阳, 葛贵军.稀有金属, 2001, 25(5), 374.
21 Xi X L, Si G H, Nie Z R,et al. Electrochimica Acta, 2015, 184, 233.
22 Si G H, Xi X L,Nie Z R,et al. International Journal of Refractory Metals and Hard Materials, 2016, 54, 422.
23 Wang S L, Wan C P, Liu X,et al. Metallurgical and Materials Transactions E, 2015, 2(4), 250.
24 Tang D D, Xiao W, Yin H Y, et al. Journal of The Electrochemical Society, 2012, 159(6), 139.
25 Zhang L W, Xi X L, Nie Z R. Electrochemistry Communications, 2022, 134, 107179.
26 Kartal L. Journal of Sustainable Metallurgy, 2022, 8, 197.
27 Bard A J, Faulkner L R. Electrochemical methods fundamentals and applications, Chemical Industry Press, 2005, pp. 159.
28 Li J, Li Y G,Liu L M, et al. Rare Metal Materials and Engineering, 2013, 42(11), 2237.
[1] 常娜, 陈彦如, 谢锋, 王海涛. Bi2WO6/ZIF-67复合光催化剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 21010028-6.
[2] 杜军, 蒋敏博, 张永恒, 徐思远, 魏正英. TIG电弧复合熔滴沉积增材制造45钢/铅合金双金属结构工艺研究[J]. 材料导报, 2022, 36(2): 20100016-5.
[3] 宋子威, 于燕, 朱义新, 刘臻. PREP法制备CoCrMoW合金粉末的特性及显微组织[J]. 材料导报, 2022, 36(10): 19060192-5.
[4] 司浩, 秦建, 钟素娟, 龙伟民, 王自东, 沈元勋, 董显. 钎涂技术的研究进展[J]. 材料导报, 2021, 35(z2): 333-340.
[5] 杨广宇, 汤慧萍, 刘楠, 贾文鹏, 贾亮, 杨坤, 王建. 粉床型电子束增材制造W-Nb合金的缺陷及显微组织[J]. 材料导报, 2021, 35(z2): 448-451.
[6] 刘子林, 林德海, 何发泉, 曹子雄, 王宝冬. 钠化焙烧法回收废SCR催化剂中钒和钨的浸出机理及浸出动力学研究[J]. 材料导报, 2021, 35(Z1): 429-433.
[7] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[8] 王京飞, 杨明庆, 牛春晖, 刘力双, 康浩, 吕勇. 铯钨青铜纳米材料的制备及其在节能领域的研究进展[J]. 材料导报, 2021, 35(21): 21202-21210.
[9] 吴磊, 浦娟, 吴铭方, 龙伟民, 钟素娟, 胡庆贤, 蓝阳. 不同碳化钨含量对等离子弧熔覆镍基碳化钨涂层组织及性能的影响[J]. 材料导报, 2021, 35(16): 16111-16114.
[10] 王宝冬, 刘子林, 林德海, 曹子雄, 何发泉, 路光杰, 肖雨亭. 废钒-钛系脱硝催化剂回收利用策略与技术进展[J]. 材料导报, 2021, 35(15): 15001-15010.
[11] 闫朋朋, 苏伟, 韦小凤, 朱学卫, 王府. 碳负载氮掺杂纳米碳化钨电催化剂的制备及析氢性能[J]. 材料导报, 2021, 35(14): 14007-14011.
[12] 匡敬忠, 朱陆平, 司加保, 黄哲誉, 原伟泉, 邹志磊, 邱廷省. 钨尾矿机械-化学活化及其与水泥水化反应机理[J]. 材料导报, 2021, 35(13): 13018-13024.
[13] 吴博宇, 徐玉平, 吕一鸣, 卢棚, 李小椿, 周海山, 刘松林, 罗广南. 嬗变元素Re、Os对聚变装置面向等离子体钨材料性能的影响[J]. 材料导报, 2021, 35(1): 1154-1161.
[14] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[15] 吴志锋, 韩毅, 杨明明, 李国栋, 王忠杰, 刘良, 谢文明. 柔性钨橡胶对手套箱管线辐射热点的屏蔽效果研究[J]. 材料导报, 2020, 34(Z2): 572-575.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed