Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16111-16114    https://doi.org/10.11896/cldb.20060282
  金属与金属基复合材料 |
不同碳化钨含量对等离子弧熔覆镍基碳化钨涂层组织及性能的影响
吴磊1, 浦娟1, 吴铭方1, 龙伟民2, 钟素娟2, 胡庆贤1, 蓝阳1
1 江苏科技大学材料科学与工程学院,镇江 212000;
2 郑州机械研究所新型钎焊材料与技术国家重点实验室,郑州 450001
Effects of Different Tungsten Carbide Contents on Microstructure and Properties of Ni-based Tungsten Carbide Cladding Layer by Plasma Arc Cladding Technology
WU Lei1, PU Juan1, WU Mingfang1, LONG Weimin2, ZHONG Sujuan2, HU Qingxian1, LAN Yang1
1 College of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China;
2 State Key Laboratory of Advanced Brazing Filler Metals and Technology, Zhengzhou Research Institute of Mechanical Engineering, Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 3546KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用等离子弧粉末熔覆技术在Q345钢表面熔覆镍基碳化钨涂层,研究了粉末中不同碳化钨含量对镍基碳化钨熔覆层组织及性能的影响。借助光学显微镜、扫描电镜及X射线衍射仪分析镍基碳化钨熔覆层的组织形貌,用显微硬度计和摩擦磨损实验机分别测量镍基碳化钨熔覆层的硬度和耐磨性。结果表明:镍基碳化钨熔覆层与基层之间呈冶金结合,涂层表面无气孔缺陷。镍基碳化钨涂层组织主要由碳化钨颗粒和镍基粘结相构成,碳化钨是WC和W2C,镍基粘结相中包含SiC、Cr23C6、Ni3Si、γ-Ni等物相。随着粉末中碳化钨含量从15%(质量分数,下同)增加至50%,熔覆涂层组织中硬质相数量增多,其硬度和耐磨性显著提高。当碳化钨含量为50%时,熔覆涂层硬度高达1 024HV10且耐磨性最好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴磊
浦娟
吴铭方
龙伟民
钟素娟
胡庆贤
蓝阳
关键词:  等离子弧粉末熔覆技术  镍基碳化钨粉末  组织  性能    
Abstract: Ni-based tungsten carbide cladding layer was fabricated on the surface of Q345 steel by plasma arc surfacing technology, the effects of diffe-rent tungsten carbides contents on the microstructure and property of Ni-based tungsten carbide cladding layer were investigated. The microstructure and morphology of the cladding layer were analyzed by using optical microscopy (OP), scanning electron microscopy (SEM), and X-ray diffractometer (XRD). The hardness and wear resistance of the cladding layer were tested with a microhardness tester and a friction-wear test machine. The results showed that there was a metallurgical bonding between the cladding layer and the base material, and no porosity existed on the surface of the cladding layer. The microstructure of the cladding layer was composed of the tungsten carbide particles in the form of WC and W2C and Ni-based binders which contained SiC、Cr23C6、Ni3Si、γ-Ni. When the content of tungsten carbide in the powder increased from 15%(mass fraction, the same below) to 50%, the number of hard phases in the microstructure of the cladding layer increased, which significantly improve the hardness and wear resistance of the cladding layer. When the content of tungsten carbide was 50wt%, the hardness of cladding layer was up to 1 024HV10 and the wear resistance reached the optimum.
Key words:  plasma arc powder cladding technology    Ni-based tungsten carbide powder    microstructure    property
                    发布日期:  2021-09-07
ZTFLH:  TG425  
基金资助: 新型钎焊材料与技术国家重点实验室项目(SKLABFMT201905);江苏省自然科学基础面上项目(BK20191458);江苏科技大学本科生创新计划;江苏省研究生科研与实践创新计划(SJCX20-1457)
通讯作者:  pu_juan84@163.com   
作者简介:  浦娟,江苏科技大学副教授。2016年毕业于华中科技大学,获得材料加工工学博士学位。主要从事先进焊接材料及先进焊接技术工作,重点研究材料表面改性。在国内外重要期刊发表文章10多篇,申报发明专利5项。
引用本文:    
吴磊, 浦娟, 吴铭方, 龙伟民, 钟素娟, 胡庆贤, 蓝阳. 不同碳化钨含量对等离子弧熔覆镍基碳化钨涂层组织及性能的影响[J]. 材料导报, 2021, 35(16): 16111-16114.
WU Lei, PU Juan, WU Mingfang, LONG Weimin, ZHONG Sujuan, HU Qingxian, LAN Yang. Effects of Different Tungsten Carbide Contents on Microstructure and Properties of Ni-based Tungsten Carbide Cladding Layer by Plasma Arc Cladding Technology. Materials Reports, 2021, 35(16): 16111-16114.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060282  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16111
1 Pu J, Li Z P, Hu Q X, et al.International Journal of Modern Physics B, 2019, 33, 6.
2 Pu J, Rao J W, Shen Y F, et al.International Journal of Modern Physics B, 2020, 33, 7.
3 Tao Q, Wang C, Shen C J, et al.Rare Metal Materials & Engineering, 2015, 44(9), 2245(in Chinese).
陶庆, 王聪, 沈承金, 等.稀有金属材料与工程,2015,44(9),2245.
4 Mendez P F, Barnes N, Bell K, et al.Journal of Manufacturing Processes, 2014, 16(1), 4.
5 Wang M Q, Zhou Z H, Wu L T, et al.Journal of Thermal Spray Techno-logy, 2018, 27(4), 769.
6 Zhang S Y, Xu S W, Gao H, et al.Journal of Alloys and Compounds, 2020, 814, 152272.
7 Zhang S Y, Zhang X F, Lu Q S, et al.Materials Letters, DOI:10.1016/j.matlet.2019.126960.
8 Xu J L, Li Z G, Guo H F, et al.Hot Working Technology, 2013, 42(8), 6(in Chinese).
徐家乐, 李忠国, 郭华锋, 等. 热加工工艺, 2013, 42(8), 6.
9 Chen S G, Zhang X M, Zheng Q C, et al.Laser Technology, 2017, 41(6), 904(in Chinese).
陈顺高, 张晓明, 郑启池, 等.激光技术, 2017, 41(6), 904.
10 Xu G J, Kutsuna M, Liu Z J, et al.Materials Science & Engineering A, 2005, 417(1), 63.
11 Zhou Q. Study on plasma powder spray surfacing technology. Master's Thesis, Jiangsu University of Science and Technology, China, 2010 (in Chinese).
周权.等离子喷粉堆焊工艺研究.硕士学位论文,江苏科技大学, 2010.
12 Alidokht S A, Vo P, Yue S, et al.Journal of Thermal Spray Technology, 2017, 26(8), 1908.
13 Xie G Z, Song X L, Zhang D J, et al.Applied Surface Science, 2010, 256(21), 6354.
14 Zhang Z Z, Chen Y B, Zhang Y, et al.Journal of Alloys & Compounds, 2017, 704, 260.
15 Yuan Y L, Li Z G.Applied Surface Science, 2017, 423, 13.
16 Sundaramoorthy R, Tong S X, Parekh D, et al.Wear, 2017, 376-377, 1720.
17 Claros J M, García-Vázquez F, Hernández-García H M, et al. In: Wel-ding symposium at the 5th International Welding, Industrial Engineering and Manufacturing Congress. Saltillo, México, 2015.
18 Zhang M Y, Li M, Chi J, et al.Surface & Coatings Technology, 2019, 374, 645.
19 Zhao W, Zhang K, Liu P, et al.Journal of Functional Materials, 2019, 50(1), 1098(in Chinese).
赵伟, 张柯, 刘平, 等.功能材料, 2019, 50(1), 1098.
20 Zhang Y M, Shuai G G, Huang J H, et al.Heat Treatment of Metals, 2016, 41(2), 79(in Chinese).
张艳梅, 帅歌国, 黄杰煌, 等. 金属热处理, 2016, 41(2), 79.
21 Li X F, Feng Z J, Sun J H, et al.Hot Working Technology, 2017, 46(14), 164(in Chinese).
李学峰, 封子佳, 孙俊华, 等. 热加工工艺, 2017, 46(14), 164.
22 Du L P. Study on laser surface modification of 45#/35# steel. Master's Thesis, Zhengzhou University, China, 2001 (in Chinese).
杜利平. 45#/35#钢的激光表面改性研究. 硕士学位论文,郑州大学, 2001.
23 Li S T, Liu S S, Chen H, et al.Surface Technology, 2018, 47(2), 103(in Chinese).
李淑涛, 刘珊珊, 陈海, 等. 表面技术, 2018, 47(2), 103.
24 Tang G P, Huang W R, Yang J L.Heat Treatment of Metals, 2002(4), 13(in Chinese).
汤光平, 黄文荣, 杨家林. 金属热处理, 2002(4), 13.
[1] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[2] 韩美旭, 蔡伦, 王小泽, 藏洁, 孙梦宇, 杨涵凝, 秦连杰. 白光LED用氮化物红色荧光粉的研究进展[J]. 材料导报, 2021, 35(Z1): 51-55.
[3] 张明伟, 曲冠达, 庞梦瑶, 刘瑞, 曹贯宇, 李泽, 陈子帅, 刘景顺. 电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021, 35(Z1): 62-70.
[4] 刘林涛, 张勇, 吕海兵, 何飞. EB-PVD热障涂层粘结层/TGO界面性能的研究进展[J]. 材料导报, 2021, 35(Z1): 160-162.
[5] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[6] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[7] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[8] 张小涛, 李庆超, 李东旭. 碳基材料对水泥基材料性能的影响[J]. 材料导报, 2021, 35(Z1): 220-224.
[9] 周横一, 钱春香, 陈燕强. GRC制品抗泛碱性能的提升及机理[J]. 材料导报, 2021, 35(Z1): 225-231.
[10] 罗遥凌, 高育欣, 闫欣宜, 谢昱昊, 毕耀. 热养护UHPC后期水稳定性[J]. 材料导报, 2021, 35(Z1): 242-246.
[11] 李崇智, 王梦宇, 牛振山. 渗透结晶型表面防护剂对混凝土耐久性的影响[J]. 材料导报, 2021, 35(Z1): 247-250.
[12] 宋云连, 高盼, 吕鹏. 温拌沥青低温性能及其微观特性机理研究[J]. 材料导报, 2021, 35(Z1): 251-257.
[13] 索智, 谭祎天, 谢聪聪. 基于灰度分析的抑尘沥青混合料微宏观性能关联研究[J]. 材料导报, 2021, 35(Z1): 258-263.
[14] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[15] 任万青, 徐掌印, 尹贻光, 祁震. TiFe基储氢材料性能的研究进展[J]. 材料导报, 2021, 35(Z1): 306-310.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed