Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21120138-5    
  高分子与聚合物基复合材料 |
pH敏感型水凝胶在药物递送中的研究进展
张瑜1,2, 张泗达2, 丁秀仿2, 张瑞华2, 陈东2, 徐建富2, 附青山1
1 四川轻化工大学材料科学与工程学院,四川 自贡 643000
2 国民核生化灾害防护国家重点实验室,北京 102205
Research Progress of pH Sensitive Hydrogels in Drug Delivery
ZHANG Yu1,2, ZHANG Sida2, DING Xiufang2, ZHANG Ruihua2, CHEN Dong2, XU Jianfu2, FU Qingshan1
1 College of Materials Science and Engineering, Sichuan University of Science and Engineering,Zigong 643000, Sichuan, China
2 State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
下载:  全 文 ( PDF ) ( 2465KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水凝胶是一种由亲水性聚合物进行交联形成的三维多孔网络结构材料,在水溶液中膨胀,由于其独特的物理或化学性质(如生物相容性、生物可降解性、亲水性等)被广泛应用于药物缓释、靶向递送、组织工程等领域。智能响应型水凝胶会根据体内环境微小变化和刺激做出感知及响应,如温度敏感型水凝胶、pH敏感型水凝胶、光敏感型水凝胶、磁敏感型水凝胶、离子敏感型水凝胶等。其中pH敏感型水凝胶能够在不同pH环境刺激下产生形貌及结构变化,作为一种新型的药物递送载体材料,近年来受到越来越多的关注。pH敏感型水凝胶可根据人体环境的不同pH值调节自身性质或结构,在身体局部形成半固体,有良好的粘附性,可靶向递送药物。pH敏感型水凝胶的聚合材料主要包括天然高分子材料和合成材料,其中天然高分子材料包括壳聚糖、羧甲基纤维素、海藻酸钠,人工合成材料有聚丙烯酸、聚甲基丙烯酸等。pH敏感型水凝胶的制备方法主要有物理交联聚合法和化学交联聚合法。本文归纳了pH敏感型水凝胶的研究进展,分别对pH敏感型水凝胶的常用聚合材料、制备方法及其在药物递送领域应用的最新进展进行了综述,对其研究方向和应用前景进行了展望,并为后期开展pH敏感型水凝胶研究与应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张瑜
张泗达
丁秀仿
张瑞华
陈东
徐建富
附青山
关键词:  pH敏感型  水凝胶  载体材料  药物递送    
Abstract: Hydrogel is a three-dimensional porous network structure polymer cross-linked by a hydrophilic polymer, which swells in an aqueous solution and is insoluble in water. Due to the unique physical or chemical properties, such as biocompatibility and bioavailability, and the advantages of degradability, hydrophilicity and so on, hydrogel is widely used in the fields of drug release, targeted delivery, tissue engineering, etc. Smart response hydrogels will perceive and respond to small changes and stimuli in the body environment, such as temperature-sensitive hydrogels, pH-sensitive hydrogels, light-sensitive hydrogels, magnetic-sensitive hydrogels, ions-sensitive hydrogels, etc. Among them, pH-sensitive hydrogel is the most common hydrogel, which can produce morphological and structural changes in different pH environments. As a new type of drug delivery carrier material, it has received more and more attention in recent years. The pH-sensitive hydrogel can adjust its own properties or structure according to the different pH values of the human environment, form a semi-solid part of the body, have good adhesion, and be capable of targeted drug delivery.The polymeric materials of pH-sensitive hydrogels mainly include natural polymer materials and synthetic materials. Natural polymer materials include chitosan, carboxymethyl cellulose, and sodium alginate, while artificial synthetic materials include polyacrylic acid, polymethacrylic acid and so on. The preparation methods of pH-sensitive hydrogel mainly include physical cross-linking polymerization method and chemical cross-linking polymerization method. This article reviews the research progress of pH-sensitive hydrogel, and summarizes the latest advances in the common polymer materials, preparation methods, and applications of pH-sensitive hydrogel in the field of drug delivery. The research and application prospects of these are also summarized. A prospect and a reference for the later research and application of pH-sensitive hydrogel are provided.
Key words:  pH-sensitive    hydrogel    carrier material    drug delivery
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  R943  
基金资助: 国家自然科学青年基金(51902216)
通讯作者:  jianfuxu2000@hotmail.com;sendysan@suse.edu.cn   
作者简介:  张瑜,2017年6月毕业于四川化工职业技术学院。现为四川轻化工大学材料科学与工程学院硕士研究生,在附青山教授和徐建富教授的指导下进行研究。目前主要研究方向为水凝胶。
徐建富,国民核生化灾害防护国家重点实验室研究员、硕士研究生导师。2008年博士毕业于北京协和医学院。目前主要从事纳米药物研究。
附青山,博士,教授,硕士研究生导师。在四川大学获得学士、硕士和博士学位,在英国利物浦大学作访问学者;2012年起任教于四川轻化工大学。目前主要从事污水再生处理及新能源器件相关材料研究。主要包括金属-有机骨架材料、碳纳米材料,静电纺丝膜材料以及其他多孔材料。
引用本文:    
张瑜, 张泗达, 丁秀仿, 张瑞华, 陈东, 徐建富, 附青山. pH敏感型水凝胶在药物递送中的研究进展[J]. 材料导报, 2022, 36(Z1): 21120138-5.
ZHANG Yu, ZHANG Sida, DING Xiufang, ZHANG Ruihua, CHEN Dong, XU Jianfu, FU Qingshan. Research Progress of pH Sensitive Hydrogels in Drug Delivery. Materials Reports, 2022, 36(Z1): 21120138-5.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21120138
1 Li Z, Huang J, Wu J. Biomaterials Science, 2021, 9(3), 574.
2 Ahmed E M. Journal of Advanced Research,2015,6(2), 105.
3 Marcombe R, Cai S, Hong W, et al. Soft Matter, 2010, 6(4), 784.
4 Su C Y, Ho H O, Chen Y C,et al. Scientific Reports, 2018, 8(1), 1.
5 Akala E O, Kopečková P, Kopečk J. Biomaterials, 1998, 19(11-12), 1037.
6 Chen T, Li S, Zhu W, et al. Journal of Microencapsulation, 2019, 36(1), 96.
7 Yu S, Zhang X, Tan G, et al. Carbohydrate Polymers, 2017, 155, 208.
8 Guo B L, Yuan J F, Gao Q Y. Polymer International, 2008, 57(3), 463.
9 Aycan D, Alemdar N. Carbohydrate Polymers, 2018, 184, 401.
10 Barkhordari S, Alizadeh A. Polymer Bulletin, DOI:10/1007/s00289-021-03761-3.
11 Zennifer A, Senthilvelan P, Sethuraman S, et al. Carbohydrate Polymers, 2021, 256, 117561.
12 Jeddi M K, Mahkam M. International Journal of Biological Macromolecules, 2019, 135, 829.
13 Supramaniam J, Adnan R, Kaus N H M, et al. International Journal of Biological Macromolecules, 2018, 118, 640.
14 Rasoulzadeh M, Namazi H. Carbohydrate Polymers, 2017, 168, 320.
15 Sun X, Liu C, Omer A M, et al. International Journal of Biological Macromolecules, 2019, 128, 468.
16 Venkatesan J, Bhatnagar I, Manivasagan P, et al. International Journal of Biological Macromolecules, 2015, 72, 269.
17 Chang S,Qin D, Yan R,et al. ACS Omega, 2021, 6(2), 1119.
18 Zou Z, Zhang B, Nie X, et al. RSC Advances,2020, 10(65), 39722.
19 Mertins O, Mathews P D. Nanomaterials, 2020, 10(5), 963.
20 Mukhopadhyay P, Sarkar K, Bhattacharya S, et al. Carbohydrate Polymers, 2014, 112, 627.
21 Wu H, Jin H,Wang C, et al. ACS Applied Materials & Interfaces, 2017, 9(11), 9426.
22 Rattanawongwiboon T, Ghaffarlou M, Sütekin S D, et al. Colloid and Polymer Science, 2018, 296(9), 1599.
23 Li Z,Huang J, Wu J. Biomaterials Science, 2021, 9(3), 574.
24 Xu Q, Huang W, Jiang L, et al. Carbohydrate Polymers, 2013, 97(2), 565.
25 Xue B,Kozlovskaya V,Liu F,et al. ACS Applied Materials & Interfaces, 2015, 7(24), 13633.
26 Luo Y L, Xu F, Feng Q S, et al. Journal of Biomedical Materials Research Part B, 2010, 92(1), 243.
27 Varaprasad K, Raghavendra G M, Jayaramudu T, et al. Materials Science and Engineering C, 2017, 79, 958.
28 Ye X, Li X, Shen Y, et al. Polymer, 2017, 108, 348.
29 Zhang M, Chen G, Lei M, et al. International Journal of Biological Macromolecules, 2021, 182, 385.
30 Wang M,Zang Y, Hong K, et al. International Journal of Biological Macromolecules, 2021, 192, 684.
31 Suhail M, Wu P C, Minhas M U. Journal of Saudi Chemical Society, 2021, 25(4), 101212.
32 Pridgen E M, Alexis F, Farokhzad O C. Expert Opinion on Drug Delivery, 2015, 12(9), 1459.
33 Cao S, Xu S, Wang H, et al. AAPS PharmSciTech, 2019, 20(5), 1.
34 Yang J, Chen J, Pan D, et al. Carbohydrate Polymers, 2013, 92(1), 719.
35 Karnoosh-Yamchi J, Rahmati-Yamchi M, Akbarzadeh A, et al. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45(6), 1222.
36 Chen T, Li S, Zhu W, et al. Journal of Microencapsulation, 2019, 36(1), 96.
37 Arafa A A, Nada A A, Ibrahim A Y, et al. International Journal of Biological Macromolecules, 2021,182, 1820.
38 Guo T, Kang X, Ren S, et al. Nanomaterials, 2021, 11(11), 2812.
39 Sun Y, Nan D, Jin H, et al. Polymer Testing, 2020, 81, 106283.
40 Liang Y, Zhao X, Ma P X, et al. Journal of Colloid and Interface Science, 2019, 536, 224.
41 Qu J, Zhao X, Ma P X, et al. Acta Biomaterialia, 2018, 72, 55.
42 Dhuria S V, Hanson L R, Frey II W H. Journal of Pharmaceutical Sciences, 2010, 99(4), 1654.
43 Edsman K, Carlfors J,Petersson R. European Journal of Pharmaceutical Sciences, 1998, 6(2), 105.
44 Elkomy M H, El-Menshawe S F, Ali A A, et al. Drug Delivery and Translational Research, 2018, 8(1), 165.
45 Chen Y, Cheng G, Hu R, et al. AAPS PharmSciTech, 2019 ,20(7), 1.
46 Li X Y, Zhang Z, Chen H. International Journal of Pharmaceutics, 2013, 448(1), 96.
47 Zhang Z, Yu J, Zhou Y, et al. Colloids and Surfaces B: Biointerfaces, 2018, 164, 436.
[1] 黄金鑫, 吴承伟, 余小刚, 马建立, 张伟. 基于多巴胺的自愈水凝胶研究进展[J]. 材料导报, 2022, 36(8): 20070335-7.
[2] 王通, 王广飞, 张淑敏, 曲承蕾, 李诚博, 高永林. 基于天然多糖的水凝胶伤口敷料的研究进展[J]. 材料导报, 2022, 36(6): 20060050-9.
[3] 胡丹娜, 巨晓洁, 谢锐, 汪伟, 刘壮, 褚良银. 生理pH下可控释放胰岛素的温度/葡萄糖双响应可注射复合水凝胶[J]. 材料导报, 2022, 36(3): 21040234-7.
[4] 义水灵, 熊向源. 转铁蛋白在纳米靶向药物递送体系的应用[J]. 材料导报, 2021, 35(z2): 501-507.
[5] 吴丽梅, 刘庆欣, 王晓龙, 唐宁, 高丽丽, 胡玲. 相变储能材料研究进展[J]. 材料导报, 2021, 35(Z1): 501-506.
[6] 罗涛, 马爱洁, 白海燕, 程勇博, 周宏伟. 磁诱导高取向水凝胶的构筑及功能[J]. 材料导报, 2021, 35(5): 5206-5213.
[7] 毛杰, 戴静波, 周俊慧, 张新波, 田宗明, 张斌, 秦永华. 聚乙烯醇/乙二醇/氧化石墨烯/聚苯胺导电复合物水凝胶的制备及性能研究[J]. 材料导报, 2021, 35(24): 24172-24176.
[8] 朱金龙, 郑聚成, 张定军. 前端聚合法制备聚(N-乙烯基己内酰胺-co-N,N-二甲基丙烯酰胺)智能水凝胶[J]. 材料导报, 2021, 35(16): 16149-16154.
[9] 孔志云, 樊龙伟, 杜亚杰, 牛昌昌, 狄然, 张环, 魏俊富. 金属表面离子印迹材料的研究进展[J]. 材料导报, 2021, 35(15): 15143-15152.
[10] 姜佳敏, 李盼盼, 方斌, 杜威, 柏桦, 彭勃, 李林. 蛋白质药物胞内递送纳米载体的研究进展[J]. 材料导报, 2021, 35(13): 13186-13197.
[11] 孙会娟. UHMWPE人工髋关节的接枝改性进展[J]. 材料导报, 2021, 35(11): 11208-11214.
[12] 王毓, 任俊鹏, 赵君, 周进康, 李小平. 磁性壳聚糖半互穿热膨胀水凝胶的制备及对Cr(Ⅵ)的吸附性能[J]. 材料导报, 2021, 35(10): 10205-10210.
[13] 潘华, 李文婧, 吴立涛, 张芳. 新型纳米农药制剂载体材料的研究进展[J]. 材料导报, 2020, 34(Z2): 99-103.
[14] 朱俊名, 董梁, 秦溱, 李振楠, 袁青梅. 碳基及氧化锌量子点在癌症诊疗应用中的研究进展[J]. 材料导报, 2020, 34(9): 9075-9085.
[15] 孙晓霞, 鲍艺, 彭黔荣, 陈亭羽, 卢小鸾, 杨敏. 角蛋白生物材料在创伤愈合中的应用研究进展[J]. 材料导报, 2020, 34(7): 7161-7167.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed