Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21070206-6    
  高分子与聚合物基复合材料 |
聚硼硅氧烷剪切增稠凝胶的制备影响因素及其在不同温度下的流变性能研究
林欢1,2, 石启亮2, 蔡利海1, 刘文言2, 李万利1
1 军事科学院系统工程研究院军事新能源技术研究所,北京 102300
2 中国矿业大学机电与信息工程学院,北京 100083
Study on Influencing Factors of Preparation of PBS-STG and Its Rheological Properties at Different Temperatures
LIN Huan1,2, SHI Qiliang2, CAI Lihai1, LIU Wenyan2, LI Wanli1
1 Institute of Military New Energy Technology, Institute of Systems Engineering, Academy of Military Sciences, Beijing 102300, China
2 School of Mechanical Electronic & Information Engineering, China University of Mining & Technology, Beijing 100083, China
下载:  全 文 ( PDF ) ( 7472KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚硼硅氧烷剪切增稠凝胶(Polyborodimethylsiloxanes shear thickening gel,PBS-STG)在防护材料领域具有良好的应用前景,但是关于PBS-STG的制备条件和自然环境下的稳定性研究少有报道。本工作系统研究了原料配比、反应时间、反应温度、二甲基硅油黏度对制备PBS-STG的影响以及不同温度下PBS-STG的流变性。PBS-STG的制备条件:二甲基硅油黏度为350 Pa·s,硼酸和二甲基硅油配比趋近为1∶10(B、Si物质的量比),缓慢升温至240 ℃,反应时间6 h以上。变温实验结果表明:PBS-STG在-40~40 ℃均具有剪切增稠特性并且性质稳定,在温度为10 ℃时具有最佳剪切增稠特性,这对PBS-STG在防护领域的应用具有重要指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林欢
石启亮
蔡利海
刘文言
李万利
关键词:  聚硼硅氧烷剪切增稠凝胶(PBS-STG)  影响因素  温度  流变性    
Abstract: Polyborodimethylsiloxanes shear thickening gel (PBS-STG) has a great application prospect in the field of protective material; however, there were few reports on the preparation conditions and stability of PBS-STG in natural environment.In this work, the effects of the ratio of raw materials, reaction time, reaction temperature, viscosity of dimethyl silicone oil on the preparation of PBS-STG and the rheological properties of PBS-STG at different temperatures were systematically studied. The preparation conditions of PBS-STG were as follows: the viscosity of dimethyl silicone oil was 350 Pa·s, the ratio of boric acid and dimethyl silicone oil approached n(B)∶n(Si) was 1∶10, the temperature was slowly increased to 240 ℃, and the reaction time was more than 6 h. The experimental results at variable temperature indicated that PBS-STG had stable shear thickening characteristics from -40 ℃ to 40 ℃, and presented the best shear thickening characteristics at 10 ℃, which showed important guiding significance for the application of PBS-STG in the protection field.
Key words:  PBS-STG    influencing factors    temperature    rheology
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TB324  
通讯作者:  13520351817@139.com   
作者简介:  林欢,2017年6月毕业于延边大学,获得理学学士学位。现为中国矿业大学(北京)和军事科学院系统工程研究院军事新能源技术研究所联合培养硕士研究生,在高级工程师李万利的指导下进行研究。目前主要研究领域为防护材料。
李万利,本科、硕士毕业于厦门大学,博士毕业于中国科学院化学研究所,高分子材料专业。现为军事科学院系统工程研究院军事新能源技术研究所高级工程师。目前主要从事军事能源装备材料与安全防护技术方面的研究工作。近年来,发表论文30多篇,授权国家发明专利10余项。
引用本文:    
林欢, 石启亮, 蔡利海, 刘文言, 李万利. 聚硼硅氧烷剪切增稠凝胶的制备影响因素及其在不同温度下的流变性能研究[J]. 材料导报, 2022, 36(Z1): 21070206-6.
LIN Huan, SHI Qiliang, CAI Lihai, LIU Wenyan, LI Wanli. Study on Influencing Factors of Preparation of PBS-STG and Its Rheological Properties at Different Temperatures. Materials Reports, 2022, 36(Z1): 21070206-6.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21070206
1 Roy M R, Leathen W E. patent, US2431878, 1947.
2 Cross R. American Journal of Physics, 2012, 80(10), 870.
3 Zhang S, Wang S, Wang Y, et al. Composites Part A: Applied Science and Manufacturing, 2018, 112, 197.
4 Zhao C, Xu C, Cao S, et al. Smart Materials and Structures, 2019, 28(7), 075036.
5 Zhao C, Wang Y, Cao S, et al. Composites Science and Technology, 2019, 182, 107782.
6 Zinchenko G A, Mileshkevich V P, Kozlova N V. Polymer Science USSR, 1981, 23(6), 1421.
7 王俊豪, 徐卫兵, 李政, 等. 高分子材料科学与工程, 2018, 34(10), 84.
8 许强, 周正发, 任凤梅, 等. 弹性体, 2019, 29(5), 6.
9 Wang Y, Wang S, Xu C, et al. Composites Science and Technology, 2016, 127, 169.
10 夏艳丽, 俞科静, 钱坤, 等. 塑料, 2018, 47(2), 8.
11 李旭峰,洪夕佳,许成章, 等.高分子材料科学与工程, 2014, 30(8), 22.
12 Zhang S, Wang S, Hu T, et al. Composites Part B: Engineering, 2020, 180, 107564.
13 Yao H B, Ge J, Wang C F, et al. Advanced Materials, 2013, 25(46), 6692.
14 Wang Y, Wang S, Xu C, et al. Composites Science and Technology, 2016, 127, 169.
15 Wang Y, Gong X, Xuan S. Smart Materials and Structures, 2018, 27(6), 065008.
16 Wang S, Jiang W, Jiang W, et al. Journal of Materials Chemistry C, 2014, 2(34), 7133.
[1] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[2] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[3] 王子仪, 张武龙, 王瑞燕, 邓伟新, 吴沂. 石蜡热工介质对混凝土绝热温升的影响[J]. 材料导报, 2022, 36(Z1): 21080274-5.
[4] 陈小丽, 谭敏, 罗文东. 温度对铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 21120067-5.
[5] 尹道道, 王海, 张珍杰, 向飞, 王海龙, 纪宪坤. 室外环境下不同尺寸混凝土中膨胀剂的应用效果研究[J]. 材料导报, 2022, 36(Z1): 21110148-4.
[6] 张朝, 黄太文, 蒲茜, 张家晨, 张军, 苏海军, 郭敏, 刘林. 流态床冷却定向凝固技术研究进展[J]. 材料导报, 2022, 36(7): 20090249-6.
[7] 龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
[8] 范利丹, 孙亮, 余永强, 张纪云, 郭佳奇. 偏高岭土提高水泥基注浆材料在高地温隧道工程中的适应性[J]. 材料导报, 2022, 36(6): 20100228-8.
[9] 付鹏程, 肖国庆, 丁冬海, 方宇飞, 种小川, 朱现峰. 高压电瓷废料制备低密度高强度陶粒支撑剂及其性能[J]. 材料导报, 2022, 36(4): 21010085-5.
[10] 王伟, 孙文磊, 张志虎, 于江通, 黄海博, 王杨宵, 肖奇. 激光二次扫描熔覆涂层组织演变规律及数值模拟研究[J]. 材料导报, 2022, 36(2): 20090204-7.
[11] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[12] 汪丰麟, 张为军, 毛海军, 白书欣. 温度稳定型BaTiO3基复合钙钛矿型介质材料研究进展[J]. 材料导报, 2022, 36(1): 20100126-12.
[13] 范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
[14] 艾兵, 包予佳, 张世超, 孙现凯, 孙浩然, 陶柳实, 王春朋. 氧化锌和氧化镁对磷酸盐胶黏剂吸潮性能的影响[J]. 材料导报, 2021, 35(z2): 72-74.
[15] 李世杰, 黄慧娟, 尚莉莉, 马建峰, 马千里, 刘杏娥. 活性炭净化室内甲醛的研究进展[J]. 材料导报, 2021, 35(z2): 75-80.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed