Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21060196-5    
  无机非金属及其复合材料 |
红外隐身[Si/MgF2]N一维光子晶体设计与计算
童瀚翔, 李红盛, 刘延领, 吴爱民, 黄昊
大连理工大学材料科学与工程学院,辽宁省能源材料及器件重点实验室,辽宁 大连 116024
Design and Calculation of Infrared Stealth [Si/MgF2]N One-dimensional Photonic Crystal
TONG Hanxiang, LI Hongsheng, LIU Yanling, WU Aimin, HUANG Hao
Key Laboratory of Energy Materials and Devices (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
下载:  全 文 ( PDF ) ( 4253KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对光子晶体在红外隐身方面的结构设计和需求,本工作通过求解麦克斯韦方程,构建多层薄膜系统的光学传输矩阵,为光子晶体在3~5 μm和8~14 μm处隐身提供材料选择和结构优化的方案。选择高折射率材料Si与低折射率材料MgF2,设计[Si/MgF2]N多层膜结构,推导其红外高反射态。从波动光学理论出发,介绍一维光子晶体红外隐身技术的最新进展与相关原理,计算入射角、周期数、尺寸以及折射率四个因素对光子晶体红外隐身效果的影响。结果表明,要在复杂的工作状况下实现红外隐身,除结构优化外,还需注重材料的选择。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
童瀚翔
李红盛
刘延领
吴爱民
黄昊
关键词:  光子晶体  红外隐身  传输矩阵法  折射率    
Abstract: Aiming at the structural design and requirements of photonic crystals in infrared stealth, the optical transmission matrix of multi-layer thin film system is constructed by solving Maxwell equations, which provides a solution of material selection and structure optimization for photonic crystal stealth at 3—5 μm and 8—14 μm. The infrared high reflection state of [Si/MgF2]N multi-layer was deduced by selecting high refractive index material Si and low refractive index material MgF2. Starting from the wave optics theory, the latest progress and related principles of one-dimensional photonic crystal infrared stealth technology are introduced. The effects of incident angle, period number, size and refractive index on the infrared stealth effect of photonic crystal are calculated. The results show that, besides structural optimization, the choice of materials also need paying attention to in order to achieve that the infrared stealth in complex working conditions.
Key words:  photonic crystal    infrared stealth    transfer matrix method    refractive index
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  O434  
基金资助: 中央高校基础研究基金(DUT20LAB123;DUT20LAB307);江苏省自然科学基金(BK20191167)
通讯作者:  huanghao@dlut.edu.cn   
作者简介:  童瀚翔,2019年6月毕业于安徽工业大学,获得工学学士学位。2019至今于大连理工大学攻读材料工程硕士,在黄昊教授的指导下进行研究。目前主要从事光子晶体在红外隐身方面的研究。
黄昊,大连理工大学材料科学与工程学院教授、博士研究生导师。2005年于韩国昌原国立大学获得复合材料博士学位。现主要从事核壳型纳米粒子电磁兼容与高密度储能的能源电极材料的研究。
引用本文:    
童瀚翔, 李红盛, 刘延领, 吴爱民, 黄昊. 红外隐身[Si/MgF2]N一维光子晶体设计与计算[J]. 材料导报, 2022, 36(Z1): 21060196-5.
TONG Hanxiang, LI Hongsheng, LIU Yanling, WU Aimin, HUANG Hao. Design and Calculation of Infrared Stealth [Si/MgF2]N One-dimensional Photonic Crystal. Materials Reports, 2022, 36(Z1): 21060196-5.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21060196
1 Greffet J J, Nieto-Vesperinas M. Journal of the Optical Society of America A,1998, 15(10), 2735.
2 黄文质, 刘海韬. 材料导报, 2018, 32 (S1), 385.
3 Huang Z, Zhou W, Tang X, et al.Thin Solid Films, 2011, 519,3100.
4 Guo T, Xu G, Chen Y, et al.Surface & Coatings Technology, 2016, 288, 46.
5 Xu R, Wang W, Yu D. Composite Structures, 2019, 212(5), 58.
6 Guo T, Xu G, Tan S, et al. Journal of Alloys and Compounds, 2019, 804, 503.
7 Yablonovitch E. Physical Review Letters, 1987, 58(20), 2059.
8 John S. Physical Review Letters, 1987, 58(23),2486.
9 Khan H A, Faryad M, Faryad M. Optik, 2019, 180, 492.
10 Liu B, Shi J M, Zhang J K, et al. Optical Materials, 2021, 111, 110689.
11 Abadla M M, Tabaza N A, Tabaza W, et al. Optik, 2019, 185, 784.
12 李广德,刘东青,王义,等. 红外技术, 2019,41(6),495.
13 Park C,Kim J, Hahn J W. ACS Applied Materials & Interfaces, 2020, 12(38), 43090.
14 Lee B J, Fu C J, Zhang Z M,et al. Applied Physics Letters, 2005, 87, 071904.
15 Tolmachev V A, Perova T S, Moore R A. Optics Express, 2005, 13(21), 8433.
16 高永芳,时家明,赵大鹏,等. 红外与激光工程,2012,41(4),970.
17 Wang Z X, Cheng Y Z, Nie Y, et al. Journal of Applied Physics, 2014, 116, 54905.
18 Wang F, Cheng Y Z, Wang X, et al. Optical Materials, 2018, 75,373.
19 Miao L, Shi J, Wang J, et al. Optical Engineering, 2016, 55, 57101.
20 Liu B, Chen Z S, Li Z G, et al. Optical Engineering, 2020, 59, 127107.
21 张克勤, 袁伟, 张骜.功能材料信息, 2010, 7(5), 39.
22 Wang X, Qi D, Wang F, et al. Journal of Alloys and Compounds, 2017, 697, 1.
23 Zhang J K, Liu R H, Wang H, et al. Optical Materials Express, 2019, 9, 195.
24 Hao K, Wang X, Zhou L, et al. Optik, 2020, 216, 164794.
25 Zhang J K, Shi J M, Zhao D P, et al. Infrared Physics & Technology, 2017, 85, 62.
26 刘彪,时家明,吕相银,等.光子学报,2021,50(1),67.
27 Johnson N F. Solid State Physics, 1996, 49(8),151.
28 Pendry J, Mackinnon A. Physical Review Letters, 1992, 69(19), 2772.
29 Maxwell J C. Philosophical Transactions of the Royal Society of London, 1865, 155, 459.
30 朱桓正. 基于热辐射光谱调控的红外隐身技术. 博士学位论文, 浙江大学, 2021.
31 彭亮. 选择性低发射率涂层的设计与制备研究. 硕士学位论文, 国防科学技术大学, 2015.
32 Chandler-Horowitz D, Amirtharaj P M. Journal of Applied Physics, 2005, 97, 123526.
33 Dodge M J. Applied Optics.1984, 23(12), 1980.
34 Harris M, Macleod H A, Ogura S, et al. Thin Solid Films, 1979, 57, 173.
35 李娇, 温廷敦, 许丽萍. 发光学报, 2012, 33(3), 304.
[1] 赵亚丽, 贾琨, 赵岩, 马玉峰, 李旭峰. 金属光子晶体结构对其透光率强度和曲线宽度的影响[J]. 材料导报, 2021, 35(14): 14171-14175.
[2] 胡向平, 李建新, 杨斌, 沈义梅, 徐光以, 许佩琪, 荣幸, 孟繁艳. Nb2O5原料对H-ZF类高折射率玻璃透过性能的影响因素[J]. 材料导报, 2020, 34(Z2): 138-141.
[3] 马立云, 汤永康, 鲍田, 金良茂, 甘治平, 李刚. 宽谱增透双层TiO2-SiO2/SiO2薄膜的制备与性能[J]. 材料导报, 2019, 33(Z2): 161-164.
[4] 刘立君, 张一帆, 马川, 刘晓燕. 非均匀SiO2-H2O纳米流体辐射特性研究[J]. 材料导报, 2019, 33(8): 1268-1271.
[5] 王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
[6] 陈可, 马会茹. pH响应性光子晶体[J]. 《材料导报》期刊社, 2018, 32(7): 1094-1099.
[7] 陈冬阳, 欧阳凌曦, 冯晓旭, 荣康, 杨杰, 王茺, 杨宇. 二维光子晶体微腔的制备及其对硅光学材料的光量子放大[J]. 《材料导报》期刊社, 2018, 32(13): 2189-2194.
[8] 孟佳意, 县泽宇, 李昕, 张德权. 光子晶体纤维的制备及应用*[J]. 《材料导报》期刊社, 2017, 31(5): 106-111.
[9] 徐 键,赵文娟,方 刚,徐清波. 反蛋白石结构光子晶体材料中光传输的仿真研究[J]. 《材料导报》期刊社, 2017, 31(24): 169-173.
[10] 曾 琦, 李青松, 袁 伟, 周 宁, 张克勤. 非晶无序光子晶体结构色机理及其应用[J]. 材料导报, 2017, 31(1): 43-55.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed