Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20110152-10    https://doi.org/10.11896/cldb.20110152
  无机非金属及其复合材料 |
黏土矿物基载药体系的研究进展
孙志雅1,2, 孟宇航1,2, 杨华明1,2,3
1 中南大学资源加工与生物工程学院,长沙 410083
2 中南大学矿物材料及其应用湖南省重点实验室,长沙 410083
3 中南大学建筑材料行业黏土矿物功能材料重点实验室,长沙 410083
Research Progress in Mineral-based Drug Delivery System
SUN Zhiya1,2, MENG Yuhang1,2, YANG Huaming1,2,3
1 School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
2 Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha 410083, China
3 Key Laboratory of Clay Mineral Functional Materials in China Building Materials Industry, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 11528KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 我国黏土矿物储量丰富,应用广泛。为满足经济建设发展要求和人民日益增长的需要,近年来,我国大力发展黏土矿物相关产业。在经济战略发展的重要时期,黏土矿物将是未来我国重点优势矿种,其相关研究成为我国矿物功能材料发展的重大突破口,可满足未来国家重大战略和发展需求。黏土矿物具有特殊的形貌结构、优异的理化特性、较好的生物相容性,在新兴生物医学领域展现出极大的应用潜力。一直以来,多种给药方式都受到药物泄露、突释、剂量依赖毒性等多方面限制,大大降低了药物的生物利用度与治疗效果,这便对药物载体提出了新的要求。
目前应用于药物载体的材料主要为有机、无机、有机-无机复合材料,其药物释放系统的研究方向主要为靶向给药和药物的缓、控释。大多数载药体系存在着制备过程繁琐、生产成本高、性质不稳定的问题,而黏土矿物有层状、管状、纤维状等特殊结构,表面存在丰富的羟基基团,具有良好的吸附能力、稳定的物理化学性质,因此被广泛应用于药物载体材料。大多数学者使用黏土矿物本身作为载体,制备黏土矿物基载药体系,并研究其载药性能及生物安全性。随着科学技术的发展以及矿物学、化学、医学等多学科的交叉融合,研究者对黏土矿物进行进一步的改性。利用黏土矿物独特的理化性质,可对其进行表面改性和结构改型,并结合理论计算、高技术表征等对矿物结构与性质进行剖析,从而设计功能性矿物基载药体系。
本文综述了黏土矿物基载药体系的研究进展,从黏土矿物理化性质和研究现状等方面对当前黏土矿物作为药物载体的优越性和所面临的挑战进行分析,介绍了常见黏土矿物基载药体系,如蒙脱石基载药体系、埃洛石基载药体系、高岭石基载药体系。另外,本文还介绍了未来黏土矿物基载药体系的主要研究方向,可以为开发载药率高、缓释性能好、靶向性强的新型高效载药体系的相关研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙志雅
孟宇航
杨华明
关键词:  黏土矿物  理化性质  载药体系  生物医学    
Abstract: Clay minerals are abundant and widely used in China. In order to meet the need of economic development and the growing demand of people, we have made great efforts to develop clay minerals related industries in recent years. In the important period of economic strategic development, clay minerals will be the key dominant minerals and its related research will be the major breakthrough during the development of mineral functional materials in the future. It will also be able to satisfy the major national strategies and development need commendably. Clay minerals show great application potential in the emerging biomedical fields, owing to special morphologic structure, excellent physicochemical properties and good biocompatibility. A variety of drug delivery systems are restricted by drug leakage, burst release and dose-dependent toxicity, which greatly reduce the bioavailability and therapeutic effect of drugs. Therefore, it puts forward new requirements for drug delivery systems.
At present, materials used in drug carriers are organic, inorganic and organic-inorganic composites. The main aim of drug delivery system is targeted drug delivery and slow and controlled release of drug. Most drug delivery systems are restricted by complicated preparation process, high production cost and unstable properties. Clay minerals have special structures such as layered, tubular and fibrous, rich hydroxyl groups on the surface, good adsorption capacity and stable physicochemical properties, which are widely used in drug carrier. Most scholars use clay minerals as carriers to prepare clay mineral-based drug delivery systems, and investigate their drug loading performance and biological safety. With the development of science and technology, as well as the interdisciplinary integration of mineralogy, chemistry, and medicine, research has been conducted on further modification of clay minerals. Based on the special physicochemical properties, the surface modification and structural modification are carried out to design functional mineral-based drug delivery system by combining with theoretical calculation and high-tech characterization.
This paper reviews the research progress of clay mineral-based drug delivery system, and analyzes the advantages and challenges from the aspects of physicochemical properties and research status of clay mineral. The common clay mineral-based drug delivery system, such as montmorillonite-based drug delivery system, halloysite-based drug delivery system and kaolinite-based drug delivery system are introduced. Additionally, the research direction of mineral-based drug delivery system is elaborated. This paper provides reference for the development of new efficient drug delivery systems with high drug loading rate, excellent sustained release performance and good targeting ability.
Key words:  clay minerals    physical and chemical property    drug delivery system    biomedical science
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TD985  
基金资助: 中南大学战略先导专项(ZLXD2017005);中南大学中央高校基本科研业务费专项资金(2020zzts729)
通讯作者:  hmyang@csu.edu.cn20110152-1   
作者简介:  孙志雅,2018年6月本科毕业于华北理工大学矿物加工工程专业,获工学学士学位。2021年6月硕士研究生毕业于中南大学矿业工程专业,获工学硕士学位,导师为杨华明教授。主要研究领域为矿物功能材料。杨华明,工学博士,中南大学教授、博士研究生导师,中组部国家“万人计划”领军人才、国家杰出青年科学基金获得者、国家中青年科技创新领军人才、湖南省科技领军人才、教育部新世纪优秀人才,享受国务院政府特殊津贴。现任中国建筑材料行业黏土矿物功能材料重点实验室主任、矿物材料及其应用湖南省重点实验室主任、湖南省矿物材料国际联合实验室(国际科技创新合作基地)主任。在中南工业大学获学士、硕士和博士学位,先后在英国布里斯托大学、澳大利亚昆士兰大学、俄罗斯科学院固态化学研究所任访问学者。长期从事矿物材料、能源与环境材料、生物医学材料、材料计算、固废资源化等研究,致力于材料、矿物、化学、物理、生物医学等多学科交叉,主持国家自然科学基金、国家科技支撑、863课题、973专题、博士点基金、教育部重点项目等,在Adv. Funct. Mater., Chem. Mater., Appl. Catal. B, J. Mater. Chem., J. Phys. Chem., ChemComm, Adv. Mater. Interface, Am. Mineral., Clay Clay Miner., Appl. Clay Sci.等发表SCI论文180多篇(其中ESI高被引论文7篇,Nature指数论文5篇,封面和综述6篇),SCI引用5 000余次,授权专利32件,申请国际专利4件,撰写Elsevier著作1章、出版学术专著3部,获陈新民奖励基金优秀年轻教师奖、宝钢优秀教师奖、中国硅酸盐学会青年科技奖等。担任国际期刊Clay Minerals副主编、Minerals专辑客座编辑、《材料导报》编委、第22届国际矿物学大会矿物材料分会主席,兼任中国硅酸盐学会矿物材料分会副理事长、中国矿物岩石地球化学学会矿物岩石材料专委会副主任、中国非金属矿工业协会常务理事等。
引用本文:    
孙志雅, 孟宇航, 杨华明. 黏土矿物基载药体系的研究进展[J]. 材料导报, 2022, 36(2): 20110152-10.
SUN Zhiya, MENG Yuhang, YANG Huaming. Research Progress in Mineral-based Drug Delivery System. Materials Reports, 2022, 36(2): 20110152-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110152  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20110152
1 Long M, Zhang B, Peng S Y, et al. Materials Science and Engineering: C, 2019, 105, 110081.
2 Liao J, Peng S Y, Long M, et al. Colloids and Surfaces A, 2019, 586, 124242.
3 Homayun B, Lin X, Choi H J. Pharmaceutics, 2019, 11(3), 129.
4 Zhang P, Zhang Y, Ding X Y, et al. Advanced Materials,2020, 32 (46), 2000013.
5 An Z H. China Powder Industry, 2019(5), 1(in Chinese).
安振华.中国粉体工业, 2019(5), 1.
6 Guo G Y, Miao H F, Liu L S. Chinese Traditional Patent Medicine, 1982(12), 3 (in Chinese).
郭广义, 苗洪范, 刘联声.中成药研究, 1982(12), 3.
7 Fu L J, Yang H M, Tang A D, et al. Nano Research, 2017, 10(8), 2782.
8 Awad M E, López-Galindo A, Setti M, et al. International Journal of Pharmaceutics, 2017, 533(1), 34.
9 Khatoon N, Chu M Q, Zhou C H. Journal of Materials Chemistry B, 2020, 8, 7335.
10 Xie H Y, Wan Z Q, Liu S, et al. Scientific Reports, 2019, 9(1), 6808.
11 Li G F, Quan K C, Liang Y P, et al. ACS Applied Materials & Interfaces, 2016, 8(51), 35071.
12 Chen L, Li W X, Fan L Z, et al. Advanced Functional Materials, 2019, 29(28), 1901047.
13 Xiao F Y, Ren H, Zhou H S, et al. ACS Applied Nano Materials, 2019, 2(9), 5420.
14 Fu Q L, Medina L, Li Y Y, et al. ACS Applied Materials & Interfaces, 2017, 9(41), 36154.
15 Massaro M, Cavallaro G, Colletti C G, et al. Journal of Materials Chemistry B, 2018, 6(21), 3415.
16 Yan Z L, Yang H M, Ouyang J, et al. Chemical Engineering Journal, 2017, 316, 1035.
17 Zhao Q H, Fu L J, Jiang D H, et al. Chemical Communications, 2018, 54(59), 8249.
18 Long M, Zhang Y, Huang P, et al. Advanced Functional Materials, 2018, 28(10), 1704452.
19 Cheng H F, Liu Q H, Jia X H, et, al. Journal of Synthetic Crystals, 2018, 47(2), 389 (in Chinese).
程宏飞, 刘庆贺, 贾晓辉, 等.人工晶体学报, 2018, 47(2), 389.
20 Fafard J, Detellier C. Journal of Colloid and Interface Science, 2015, 450, 361.
21 Zhang Y, Long M, Huang P, et al. Nano Research, 2017, 10(8), 2633.
22 Li R X, He Y W, Zhang S Y, et al. Acta Pharmaceutica Sinica B, 2018, 8(1), 14.
23 Cao H Q, Dan Z L, He X Y, et al. ACS Nano, 2016, 10(8), 7738.
24 Xuan M J, Shao J X, Dai L, et al. ACS Applied Materials & Interfaces, 2016, 8(15), 9610.
25 Zhou Y X, Quan G L, Wu Q L, et al. Acta Pharmaceutica Sinica B,2018, 8(2), 165.
26 Nanaki S, Siafaka P I, Zachariadou D, et al. European Journal of Pharmaceutical Sciences, 2017, 99, 32.
27 Tzur-Balter A, Shatsberg Z, Beckerman M, et al. Nature Communications, 2015, 6, 6208.
28 Yew Y P, Shameli K, Miyake M, et al. Arabian Journal of Chemistry, 2020, 13(1), 2287.
29 Li D, Deng M W, Yu Z Y, et al. ACS Biomaterials Science & Enginee-ring, 2018, 4(6), 2143.
30 Szuplewska A, Kulpinska D, Dybko A, et al. Trends in Biotechnology, 2020, 38(3), 264.
31 Shu Z, Zhang Y, Xie H Y, et al. Journal of Materials Engineering, 2018, 46(4), 23 (in Chinese).
舒展, 张毅, 谢虹忆,等.材料工程, 2018, 46(4), 23.
32 Park C G, Choi G, Kim M H, et al. Journal of Materials Chemistry B, 2020, 8(35), 7914.
33 Rebitski E P, Aranda P, Darder M, et al. Dalton Transactions, 2018, 47(9), 3185.
34 Zhao H Y, Ye H S, Zhou J, et al. ACS Applied Materials & Interfaces, 2020, 12(44), 49431.
35 Kevadiya B D, Joshi G V, Patel H A, et al. Journal of Biomaterials Applications, 2010, 25(2), 161.
36 Calabrese I, Gelardi G, Merli M, et al. Applied Clay Science, 2017, 135, 567.
37 Massaro M, Cavallaro G, Colletti C G, et al. Journal of Colloid and Interface Science, 2018, 524, 156.
38 Xue J J, Niu Y Z, Gong M, et al. ACS Nano, 2015, 9(2), 1600.
39 Lun H L, Ouyang J, Yang H M. RSC Advances, 2014, 4(83), 44197.
40 Zhang Y, Tan J, Long M, et al. Journal of Materials Chemistry B, 2016, 4(46), 7406.
41 Wu Y P, Yang J, Gao H Y, et al. ACS Applied Nano Materials, 2018, 1(2), 595.
42 Yendluri R, Lvov Y, de Villiers M M, et al. Journal of Pharmaceutical Sciences, 2017, 106(10), 3131.
43 Viseras M T, Aguzzi C, Cerezo P, et al. Microporous and Mesoporous Materials, 2008, 108(1), 112.
44 Zhang Y, Long M, Huang P, et al. Scientific Reports, 2016, 6, 33335.
45 Tan D Y, Yuan P, Dong F Q, et al. Applied Clay Science, 2018, 159, 102.
46 Tan D Y, Yuan P, Annabi-Bergaya F, et al. Applied Clay Science, 2014, 100, 60.
47 Xiang Y B, Zhang G L, Chen C W, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(1), 1192.
48 Wang Q, Zhang J P, Wang A Q. Carbohydrate Polymers, 2009, 78, 731.
49 Kryuchkova M, Danilushkina A, Lvov Y, et al. Environmental Science Nano, 2016, 3(2), 442.
50 Viseras C, Carazo E, Borrego-Sánchez A, et al. Clays and Clay Mine-rals, 2019, 67(1), 59.
51 Yu W H, Li N, Tong D S, et al. Applied Clay Science, 2013, 80-81, 443.
52 Yamaguchi N, Anraku S, Paineau E, et al. Scientific Reports, 2018, 8(1), 4367.
53 Yang J H, Lee J H, Ryu H J, et al. Applied Clay Science, 2016, 130, 20.
54 Peng K, Fu L J, Ouyang J, et al. Advanced Functional Materials, 2016, 26(16), 2666.
55 Kaur M, Arshad M, Ullah A. ACS Sustainable Chemistry & Engineering, 2018, 6(2), 1977.
56 Chen T X, Yuan Y, Zhao Y L, et al. Langmuir, 2019, 35(6), 2368.
57 Bai H Y, Zhao Y L, Wang W, et al. Conservation and Utilization of Mineral Resources, 2019, 39(6), 101 (in Chinese).
白皓宇, 赵云良, 王伟,等.矿产保护与利用, 2019, 39(6), 101.
58 Patel H A, Somani R S, Bajaj H C, et al. Bulletin of Materials Science, 2006, 29(2), 133.
59 Pavlukhina S, Zhuk I, Mentbayeva A, et al. Npg Asia Materials, 2014, 6, 121.
60 Seki Y, Yurdakoc K. Adsorption-journal of the International Adsorption Society, 2006, 12(1), 89.
61 Zheng J P, Shan J H, Fan Z M, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2011, 26(4), 628.
62 Pongjanyakul T, Rongthong T. Carbohydrate Polymers, 2010, 81, 409.
63 Dai Y N, Li P, Zhang J P, et al. Biopharmaceutics & Drug Disposition, 2008, 29(3), 173.
64 Iliescu R I, Andronescu E, Ghitulica C D, et al. International Journal of Pharmaceutics, 2014, 463(2), 184.
65 Anirudhan T S, Parvathy J. Bioactive Carbohydrates and Dietary Fibre, 2018, 16, 22.
66 Shu Z, Zhang Y, Yang Q, et al. Nanoscale Research Letters, 2017, 12(1), 135.
67 Lvov Y, Wang W, Zhang L, et al. Advanced Materials, 2016, 28(6), 1227.
68 Abdullayev E, Abbasov V, Tursunbayeva A, et al. ACS Applied Materials & Interfaces, 2013, 5(10), 4464.
69 Tao S. Preparation and properties of halloysite aerogels as multi-scale drug carriers. Master's Thesis, Tianjin University, China, 2018 (in Chinese).
陶森. 埃洛石气凝胶的制备及其多尺度载药性能研究. 硕士学位论文, 天津大学, 2018.
70 Price R R, Gaber B P, Lvov Y. Journal of Microencapsulation, 2001, 18(6), 713.
71 Verma A, Sharma S, Gupta P K, et al. Acta Biomaterialia, 2016, 31, 288.
72 Li X Y, Yang Q, Ouyang J, et al. Applied Clay Science, 2016, 126, 306.
73 Luo X, Zhang J, Wu Y P, et al. ACS Biomaterials Science & Enginee-ring, 2020, 6(6), 3361.
74 Li L Y, Zhou Y M, Gao R Y, et al. Biomaterials, 2019, 190-191, 86.
75 Zhang J, Luo X, Wu Y P, et al. ACS Applied Materials & Interfaces, 2019, 11(4), 3690.
76 Liu Q F, Ji Y, Du Y N, et al. Chinese Journal of Inorganic Chemistry, 2015, 31(3), 501 (in Chinese).
刘钦甫, 纪阳, 杜妍娜,等.无机化学学报, 2015, 31(3), 501.
77 Makó É, Kovács A, Katona R, et al. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2016, 508, 265.
78 Liu Q F, Li X G, Cheng H F. Applied Clay Science, 2016, 124, 175.
79 Kuroda Y, Ito K, Itabashi K, et al. Langmuir, 2011, 27(5), 2028.
80 Yang S Q, Yuan P, He H P, et al. Applied Clay Science, 2012, 62-63, 8.
81 Zhang S, Liu Q F, Gao F, et al. The Journal of Physical Chemistry C, 2017, 121(1), 402.
82 Bacakova L, Vandrovcova M, Kopova I, et al. Biomaterials Science, 2018, 6(5), 974.
83 Spanakis M, Bouropoulos N, Theodoropoulos D, et al. Nanomedicine: Nanotechnology, Biology and Medicine, 2014, 10(1), 197.
84 Karavasili C, Amanatiadou E P, Kontogiannidou E, et al. International Journal of Pharmaceutics, 2017, 528(1-2), 76.
85 Wu P, Deng D, Gao J W, et al. ACS Applied Materials & Interfaces, 2016, 8(16), 10243.
[1] 吴雪莲, 杨建, 屈阳, 王秀敏. 形状记忆聚合物智能材料在生物医学领域的应用[J]. 材料导报, 2021, 35(z2): 492-500.
[2] 李文娟, 廖璇, 熊向源, 龚妍春, 李资玲. Pluronic修饰脂质体的研究进展[J]. 材料导报, 2021, 35(z2): 612-615.
[3] 解维闵, 梁晓正, 赵晓光, 杨华明. 黏土矿物基纳米复合阻燃材料的研究进展[J]. 材料导报, 2021, 35(23): 23192-23204.
[4] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[5] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[6] 拜凤姣, 王卉, 陈晓敏, 吴晨星, 张克勤. 丝素蛋白基纺织材料及其在生物医学领域的应用[J]. 材料导报, 2020, 34(7): 7154-7160.
[7] 杨珏莹, 陈煜, 赵琳, 张子涵, 杨威, 刘媛, 彭克林, 王雅伦. 基于动态可逆非共价体系的自愈合水凝胶构建方法研究进展[J]. 材料导报, 2020, 34(5): 5133-5141.
[8] 卿艳红, 苏小丽, 王钺博, 周琴, 文科, 马灵涯, 陈情泽, 朱建喜. 蒙脱石黏土矿物环境材料构建的研究进展[J]. 材料导报, 2020, 34(19): 19018-19026.
[9] 申琦, 余森, 牛金龙, 汶斌斌, 刘辉, 于振涛. 选区激光熔化制备镁基材料研究进展[J]. 材料导报, 2019, 33(z1): 278-282.
[10] 李进, 赵梓年, 李征征, 薛松, 郑泽邻. 自愈合水凝胶的合成机理及生物医学应用[J]. 材料导报, 2019, 33(19): 3328-3335.
[11] 马艳,李智,冉瑞龙,李康. 蚕丝在生物医用材料领域的应用研究[J]. 《材料导报》期刊社, 2018, 32(1): 86-92.
[12] 王光荣, 高颀, 刘继雄, 杨奇, 王鼎春, 姚锐, 廖松义, 郑峰. β钛合金成分设计:理论、方法、实践[J]. 《材料导报》期刊社, 2017, 31(3): 44-51.
[13] 闫鹏, 艾凡荣, 严喜鸾, 刘东雷. 碳量子点的生物应用:成像、载药与毒性*[J]. 《材料导报》期刊社, 2017, 31(19): 35-42.
[14] 胡建新, 李凤清, 周雪琴, 刘东志, 汪天洋, 李巍. 卟啉-多肽超分子组装体系的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 128-137.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed