Research Progress in Mineral-based Drug Delivery System
SUN Zhiya1,2, MENG Yuhang1,2, YANG Huaming1,2,3
1 School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China 2 Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha 410083, China 3 Key Laboratory of Clay Mineral Functional Materials in China Building Materials Industry, Central South University, Changsha 410083, China
Abstract: Clay minerals are abundant and widely used in China. In order to meet the need of economic development and the growing demand of people, we have made great efforts to develop clay minerals related industries in recent years. In the important period of economic strategic development, clay minerals will be the key dominant minerals and its related research will be the major breakthrough during the development of mineral functional materials in the future. It will also be able to satisfy the major national strategies and development need commendably. Clay minerals show great application potential in the emerging biomedical fields, owing to special morphologic structure, excellent physicochemical properties and good biocompatibility. A variety of drug delivery systems are restricted by drug leakage, burst release and dose-dependent toxicity, which greatly reduce the bioavailability and therapeutic effect of drugs. Therefore, it puts forward new requirements for drug delivery systems. At present, materials used in drug carriers are organic, inorganic and organic-inorganic composites. The main aim of drug delivery system is targeted drug delivery and slow and controlled release of drug. Most drug delivery systems are restricted by complicated preparation process, high production cost and unstable properties. Clay minerals have special structures such as layered, tubular and fibrous, rich hydroxyl groups on the surface, good adsorption capacity and stable physicochemical properties, which are widely used in drug carrier. Most scholars use clay minerals as carriers to prepare clay mineral-based drug delivery systems, and investigate their drug loading performance and biological safety. With the development of science and technology, as well as the interdisciplinary integration of mineralogy, chemistry, and medicine, research has been conducted on further modification of clay minerals. Based on the special physicochemical properties, the surface modification and structural modification are carried out to design functional mineral-based drug delivery system by combining with theoretical calculation and high-tech characterization. This paper reviews the research progress of clay mineral-based drug delivery system, and analyzes the advantages and challenges from the aspects of physicochemical properties and research status of clay mineral. The common clay mineral-based drug delivery system, such as montmorillonite-based drug delivery system, halloysite-based drug delivery system and kaolinite-based drug delivery system are introduced. Additionally, the research direction of mineral-based drug delivery system is elaborated. This paper provides reference for the development of new efficient drug delivery systems with high drug loading rate, excellent sustained release performance and good targeting ability.
1 Long M, Zhang B, Peng S Y, et al. Materials Science and Engineering: C, 2019, 105, 110081. 2 Liao J, Peng S Y, Long M, et al. Colloids and Surfaces A, 2019, 586, 124242. 3 Homayun B, Lin X, Choi H J. Pharmaceutics, 2019, 11(3), 129. 4 Zhang P, Zhang Y, Ding X Y, et al. Advanced Materials,2020, 32 (46), 2000013. 5 An Z H. China Powder Industry, 2019(5), 1(in Chinese). 安振华.中国粉体工业, 2019(5), 1. 6 Guo G Y, Miao H F, Liu L S. Chinese Traditional Patent Medicine, 1982(12), 3 (in Chinese). 郭广义, 苗洪范, 刘联声.中成药研究, 1982(12), 3. 7 Fu L J, Yang H M, Tang A D, et al. Nano Research, 2017, 10(8), 2782. 8 Awad M E, López-Galindo A, Setti M, et al. International Journal of Pharmaceutics, 2017, 533(1), 34. 9 Khatoon N, Chu M Q, Zhou C H. Journal of Materials Chemistry B, 2020, 8, 7335. 10 Xie H Y, Wan Z Q, Liu S, et al. Scientific Reports, 2019, 9(1), 6808. 11 Li G F, Quan K C, Liang Y P, et al. ACS Applied Materials & Interfaces, 2016, 8(51), 35071. 12 Chen L, Li W X, Fan L Z, et al. Advanced Functional Materials, 2019, 29(28), 1901047. 13 Xiao F Y, Ren H, Zhou H S, et al. ACS Applied Nano Materials, 2019, 2(9), 5420. 14 Fu Q L, Medina L, Li Y Y, et al. ACS Applied Materials & Interfaces, 2017, 9(41), 36154. 15 Massaro M, Cavallaro G, Colletti C G, et al. Journal of Materials Chemistry B, 2018, 6(21), 3415. 16 Yan Z L, Yang H M, Ouyang J, et al. Chemical Engineering Journal, 2017, 316, 1035. 17 Zhao Q H, Fu L J, Jiang D H, et al. Chemical Communications, 2018, 54(59), 8249. 18 Long M, Zhang Y, Huang P, et al. Advanced Functional Materials, 2018, 28(10), 1704452. 19 Cheng H F, Liu Q H, Jia X H, et, al. Journal of Synthetic Crystals, 2018, 47(2), 389 (in Chinese). 程宏飞, 刘庆贺, 贾晓辉, 等.人工晶体学报, 2018, 47(2), 389. 20 Fafard J, Detellier C. Journal of Colloid and Interface Science, 2015, 450, 361. 21 Zhang Y, Long M, Huang P, et al. Nano Research, 2017, 10(8), 2633. 22 Li R X, He Y W, Zhang S Y, et al. Acta Pharmaceutica Sinica B, 2018, 8(1), 14. 23 Cao H Q, Dan Z L, He X Y, et al. ACS Nano, 2016, 10(8), 7738. 24 Xuan M J, Shao J X, Dai L, et al. ACS Applied Materials & Interfaces, 2016, 8(15), 9610. 25 Zhou Y X, Quan G L, Wu Q L, et al. Acta Pharmaceutica Sinica B,2018, 8(2), 165. 26 Nanaki S, Siafaka P I, Zachariadou D, et al. European Journal of Pharmaceutical Sciences, 2017, 99, 32. 27 Tzur-Balter A, Shatsberg Z, Beckerman M, et al. NatureCommunications, 2015, 6, 6208. 28 Yew Y P, Shameli K, Miyake M, et al. Arabian Journal of Chemistry, 2020, 13(1), 2287. 29 Li D, Deng M W, Yu Z Y, et al. ACS Biomaterials Science & Enginee-ring, 2018, 4(6), 2143. 30 Szuplewska A, Kulpinska D, Dybko A, et al. Trends in Biotechnology, 2020, 38(3), 264. 31 Shu Z, Zhang Y, Xie H Y, et al. Journal of Materials Engineering, 2018, 46(4), 23 (in Chinese). 舒展, 张毅, 谢虹忆,等.材料工程, 2018, 46(4), 23. 32 Park C G, Choi G, Kim M H, et al. Journal of Materials Chemistry B, 2020, 8(35), 7914. 33 Rebitski E P, Aranda P, Darder M, et al. Dalton Transactions, 2018, 47(9), 3185. 34 Zhao H Y, Ye H S, Zhou J, et al. ACS Applied Materials & Interfaces, 2020, 12(44), 49431. 35 Kevadiya B D, Joshi G V, Patel H A, et al. Journal of Biomaterials Applications, 2010, 25(2), 161. 36 Calabrese I, Gelardi G, Merli M, et al. Applied Clay Science, 2017, 135, 567. 37 Massaro M, Cavallaro G, Colletti C G, et al. Journal of Colloid and Interface Science, 2018, 524, 156. 38 Xue J J, Niu Y Z, Gong M, et al. ACS Nano, 2015, 9(2), 1600. 39 Lun H L, Ouyang J, Yang H M. RSC Advances, 2014, 4(83), 44197. 40 Zhang Y, Tan J, Long M, et al. Journal of Materials Chemistry B, 2016, 4(46), 7406. 41 Wu Y P, Yang J, Gao H Y, et al. ACS Applied Nano Materials, 2018, 1(2), 595. 42 Yendluri R, Lvov Y, de Villiers M M, et al. Journal of Pharmaceutical Sciences, 2017, 106(10), 3131. 43 Viseras M T, Aguzzi C, Cerezo P, et al. Microporous and Mesoporous Materials, 2008, 108(1), 112. 44 Zhang Y, Long M, Huang P, et al. Scientific Reports, 2016, 6, 33335. 45 Tan D Y, Yuan P, Dong F Q, et al. Applied Clay Science, 2018, 159, 102. 46 Tan D Y, Yuan P, Annabi-Bergaya F, et al. Applied Clay Science, 2014, 100, 60. 47 Xiang Y B, Zhang G L, Chen C W, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(1), 1192. 48 Wang Q, Zhang J P, Wang A Q. Carbohydrate Polymers, 2009, 78, 731. 49 Kryuchkova M, Danilushkina A, Lvov Y, et al. Environmental Science Nano, 2016, 3(2), 442. 50 Viseras C, Carazo E, Borrego-Sánchez A, et al. Clays and Clay Mine-rals, 2019, 67(1), 59. 51 Yu W H, Li N, Tong D S, et al. Applied Clay Science, 2013, 80-81, 443. 52 Yamaguchi N, Anraku S, Paineau E, et al. Scientific Reports, 2018, 8(1), 4367. 53 Yang J H, Lee J H, Ryu H J, et al. Applied Clay Science, 2016, 130, 20. 54 Peng K, Fu L J, Ouyang J, et al. Advanced Functional Materials, 2016, 26(16), 2666. 55 Kaur M, Arshad M, Ullah A. ACS Sustainable Chemistry & Engineering, 2018, 6(2), 1977. 56 Chen T X, Yuan Y, Zhao Y L, et al. Langmuir, 2019, 35(6), 2368. 57 Bai H Y, Zhao Y L, Wang W, et al. Conservation and Utilization of Mineral Resources, 2019, 39(6), 101 (in Chinese). 白皓宇, 赵云良, 王伟,等.矿产保护与利用, 2019, 39(6), 101. 58 Patel H A, Somani R S, Bajaj H C, et al. Bulletin of Materials Science, 2006, 29(2), 133. 59 Pavlukhina S, Zhuk I, Mentbayeva A, et al. Npg Asia Materials, 2014, 6, 121. 60 Seki Y, Yurdakoc K. Adsorption-journal of the International Adsorption Society, 2006, 12(1), 89. 61 Zheng J P, Shan J H, Fan Z M, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2011, 26(4), 628. 62 Pongjanyakul T, Rongthong T. Carbohydrate Polymers, 2010, 81, 409. 63 Dai Y N, Li P, Zhang J P, et al. Biopharmaceutics & Drug Disposition, 2008, 29(3), 173. 64 Iliescu R I, Andronescu E, Ghitulica C D, et al. International Journal of Pharmaceutics, 2014, 463(2), 184. 65 Anirudhan T S, Parvathy J. Bioactive Carbohydrates and Dietary Fibre, 2018, 16, 22. 66 Shu Z, Zhang Y, Yang Q, et al. Nanoscale Research Letters, 2017, 12(1), 135. 67 Lvov Y, Wang W, Zhang L, et al. Advanced Materials, 2016, 28(6), 1227. 68 Abdullayev E, Abbasov V, Tursunbayeva A, et al. ACS Applied Materials & Interfaces, 2013, 5(10), 4464. 69 Tao S. Preparation and properties of halloysite aerogels as multi-scale drug carriers. Master's Thesis, Tianjin University, China, 2018 (in Chinese). 陶森. 埃洛石气凝胶的制备及其多尺度载药性能研究. 硕士学位论文, 天津大学, 2018. 70 Price R R, Gaber B P, Lvov Y. Journal of Microencapsulation, 2001, 18(6), 713. 71 Verma A, Sharma S, Gupta P K, et al. Acta Biomaterialia, 2016, 31, 288. 72 Li X Y, Yang Q, Ouyang J, et al. Applied Clay Science, 2016, 126, 306. 73 Luo X, Zhang J, Wu Y P, et al. ACS Biomaterials Science & Enginee-ring, 2020, 6(6), 3361. 74 Li L Y, Zhou Y M, Gao R Y, et al. Biomaterials, 2019, 190-191, 86. 75 Zhang J, Luo X, Wu Y P, et al. ACS Applied Materials & Interfaces, 2019, 11(4), 3690. 76 Liu Q F, Ji Y, Du Y N, et al. Chinese Journal of Inorganic Chemistry, 2015, 31(3), 501 (in Chinese). 刘钦甫, 纪阳, 杜妍娜,等.无机化学学报, 2015, 31(3), 501. 77 Makó É, Kovács A, Katona R, et al. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2016, 508, 265. 78 Liu Q F, Li X G, Cheng H F. Applied Clay Science, 2016, 124, 175. 79 Kuroda Y, Ito K, Itabashi K, et al. Langmuir, 2011, 27(5), 2028. 80 Yang S Q, Yuan P, He H P, et al. Applied Clay Science, 2012, 62-63, 8. 81 Zhang S, Liu Q F, Gao F, et al. The Journal of Physical Chemistry C, 2017, 121(1), 402. 82 Bacakova L, Vandrovcova M, Kopova I, et al. Biomaterials Science, 2018, 6(5), 974. 83 Spanakis M, Bouropoulos N, Theodoropoulos D, et al. Nanomedicine: Nanotechnology, Biology and Medicine, 2014, 10(1), 197. 84 Karavasili C, Amanatiadou E P, Kontogiannidou E, et al. International Journal of Pharmaceutics, 2017, 528(1-2), 76. 85 Wu P, Deng D, Gao J W, et al. ACS Applied Materials & Interfaces, 2016, 8(16), 10243.