Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 21030077-6    https://doi.org/10.11896/cldb.21030077
  无机非金属及其复合材料 |
一步法氧化改性纳米碳增强芒硝基复合相变材料热性能
蒋自鹏1, 张雨1, 铁健1,2, 铁生年1
1 青海大学青海省先进材料与应用技术重点实验室,西宁 810016
2 青海师范大学物电学院,西宁 810016
One-step Oxidation of Nano Carbon Materials to Enhance the Thermal Properties of Glauber's Salt PCMs
JIANG Zipeng1, ZHANG Yu1, TIE Jian1,2, TIE Shengnian1
1 Qinghai Provincial Key Laboratory of Advanced Materials and Applied Technology, Qinghai University, Xining 810016, China
2 College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810016, China
下载:  全 文 ( PDF ) ( 11997KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以Na2SO4·10H2O 和Na2CO3·10H2O复合物为相变材料,通过浓H2SO4 和浓HNO3一步法氧化改性得到多壁碳纳米管和纳米碳粉表层亲水基团结构,以改性亲水纳米碳为添加剂制备改性纳米炭材料/Na2SO4·10H2O复合相变材料。实验结果表明:两种强酸能够有效地在纳米炭材料表面氧化得到亲水性的羧基基团,氧化后碳纳米管和纳米碳粉表面的O元素含量分别增加至7.93%和10.53%(原子分数,下同),富含羧基的纳米炭材料能与芒硝基复合相变材料均匀分散且不发生相分层,添加0.05%、0.1%和0.25%的不同含量氧化后的改性碳纳米材料,相变潜热均大于200 J·g-1,导热系数和热扩散系数大幅度提升,制备的相变材料表现出优异的热性能。相变材料经过200次吸放热循环实验后仍能保持较高的相变潜热和较低的相变过冷度,本工作通过一步氧化法成功地制备出热性能优异且稳定的改性纳米炭材料/Na2SO4·10H2O复合相变材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋自鹏
张雨
铁健
铁生年
关键词:  改性纳米炭材料  一步氧化  Na2SO4·10H2O相变材料  相变热性能    
Abstract: Na2SO4·10H2O and Na2CO3·10H2O composites were used as the basic phase change materials (PCMs), and multi-walled carbon nanotubes and carbon nano powder were modified to form hydrophilic groups on the surface of materials by one-step oxidation with concentrated H2SO4 and concentrated HNO3. The modified carbon nanomaterials were used as the additives to prepare modified carbon nano powders/Na2SO4·10H2O composites PCMs. The experimental result shows that the two kinds of mixed acids can effectively oxidize to form abundant hydrophilic carboxyl groups on the surface of the nano carbon materials, and the O element content of two kinds of modified carbon nanomaterials increases to 7.93at% and 10.53at%, respectively; the surface carboxyl groups of the nano carbon can effectively affinity and uniformly distribute with the glauber's salt-based composite PCMs; the latent heat of phase change after adding 0.05at%, 0.1at% and 0.25at% of different kinds of modified carbon nano materials of them are greater than 200 J·g-1, while the thermal conductivity and thermal diffusion coefficients are greatly improved, and the prepared PCMs exhibit excellent thermal properties. After 200 cycles, the PCMs can still maintain a high phase transition latent heat and a low phase transition supercooling degree. In this work, the modified carbon nano materials/Na2SO4·10H2O composite PCMs with excellent and stable thermal properties were successfully prepared by one-step oxidation method.
Key words:  modified nano-carbon materials    one step oxidation    Na2SO4·10H2O phase change materials    thermal performance
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TQ12  
  TB34  
基金资助: 青海省自然基金项目(2020-ZJ-909;2021-ZJ-906);青海省千人计划项目(724112);材料复合新技术国家重点实验室(武汉理工大学)开放基金项目(2020-KF-1)
通讯作者:  tieshengnian@163.com   
作者简介:  蒋自鹏,青海大学讲师,分别于2014年6月、2017年6月在青海大学获得化学工程与工艺专业工学学士学位和应用化学专业工学硕士学位,毕业后留校任教。2020年9月至今,在北京化工大学攻读材料科学与工程专业博士学位。目前为止,以第一作者身份在国内外学术期刊上发表论文7篇,受邀担任Chemical Engineering Journal等期刊同行评审人。研究工作主要围绕新能源储能材料,开展关于相变材料、炭基光热转换材料和材料电化学等的研究。
铁生年,青海大学教授、硕士研究生导师,享受国务院政府特殊津贴。青海大学新能源光伏产业研究中心常务副主任、科技委员会委员,青海省先进材料与应用技术重点实验室主任,青海大学非金属材料研究所所长。1983年9月至1987年7月在青海师范大学获得化学专业理学学士学位,2005年1月至2006年1月在北京科技大学金属材料专业访问学习。国家留学基金委派遣新西兰奥克兰大学高级访问学者,青海省委派遣西部之光访问学者,主持完成国家863项目2项,主持完成青海省科技攻关项目5项。主要从事新能源材料、粉体材料、环境保护材料以及太阳能综合利用等方向的科学研究工作,在国内外学术期刊上发表论文100余篇,申请国家发明专利30项,其中授权18项。获中国侨界贡献创新成果奖、全国优秀科技工作者等省部级奖项3项。
引用本文:    
蒋自鹏, 张雨, 铁健, 铁生年. 一步法氧化改性纳米碳增强芒硝基复合相变材料热性能[J]. 材料导报, 2022, 36(12): 21030077-6.
JIANG Zipeng, ZHANG Yu, TIE Jian, TIE Shengnian. One-step Oxidation of Nano Carbon Materials to Enhance the Thermal Properties of Glauber's Salt PCMs. Materials Reports, 2022, 36(12): 21030077-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030077  或          http://www.mater-rep.com/CN/Y2022/V36/I12/21030077
1 Wang W X, Qi H, Ding Y M. Chemistry, 2021, 84(4), 330 (in Chinese).
王温馨, 齐红, 丁益民. 化学通报, 2021, 84(4), 330.
2 Efimova A, Pinnau S, Mischke M, et al. Thermochimica Acta, 2014, 575, 276.
3 Kenisarin M, Mahkamov K. Solar Energy Materials and Solar Cells, 2016, 145, 255.
4 He Q, Fei H, Du W Q, et al. New Chemical Materials, 2021, 49(4), 11 (in Chinese).
贺倩, 费华, 杜文清, 等. 化工新型材料, 2021, 49(4), 11.
5 Zhang Z F, Qing Z Y, Li Y, et al. Materials Reports A:Review Papers, 2019, 33(11), 3613 (in Chinese).
张正飞, 秦紫依, 李勇, 等. 材料导报:综述篇, 2019, 33(11), 3613.
6 Safari A, Saidur R, Sulaiman F A, et al. Renewable and Sustainable Energy Reviews 2017, 70, 905.
7 Lin Y, Jia Y, Alva G, et al. Renewable and Sustainable Energy Reviews 2018, 82, 2730.
8 Chen X, Cheng P, Tang Z, et al. Advanced Science, 2021, 8(9), 2001274.
9 Jiang Z P, Liu X, Lyu M Y, et al. Bulletin of the Chinese Ceramic Society, 2019,38(12),3941 (in Chinese).
蒋自鹏,柳馨,吕梦圆,等. 硅酸盐通报, 2019, 38(12), 3941.
10 Zhang X X, Li X, Zhou Y, et al. RSC Advances, 2018, 8, 1022.
11 Li G, Ouyang T, Jiang C, et al. Acta Materiae Compositae Sinica, 2020, 37(5), 1130 (in Chinese).
李果, 欧阳婷, 蒋朝, 等. 复合材料学报, 2020, 37(5), 1130.
12 Wu S F, Yan T, Kuai Z H, et al. Materials Reports, 2021, 35(4), 4186 (in Chinese).
吴韶飞, 闫霆, 蒯子函, 等. 材料导报, 2021, 35(4), 4186.
13 Min P, Liu J, Li X, et al. Advanced Functional Materials, 2018, 28 (51), 1805365.
14 Wang C J, Duan Z Y, Su Q, et al. Materials Reports A:Review Papers, 2020, 34(12), 23074 (in Chinese).
王成君, 段志英, 苏琼, 等. 材料导报:综述篇, 2020, 34(12), 23074.
15 Liu X, Tie J, Wang Z, et al. Journal of Materials Research and Technology, 2021, 12, 982.
16 Zhou S Y, Zhou Y, Zhang Z G, et al. Applied Thermal Engineering, 2018, 133,446.
17 Xu B, Zhang C, Chen C, et al. Journal of Thermal Analysis and Calori-metry, 2018, 133, 1417.
18 Wang Y, Mi H, Zheng Q, et al. ACS Applied Materials & Interfaces, 2015, 7, 21602.
19 Barannikov V P, Guseynov S S, Vyugin A I. Thermochimica Acta, 2010, 499, 61.
20 Zhaoa X, Zheng X, Wei Y, et al. Journal of Chromatography B, 2009, 877, 911.
21 Jiang Z P, Tie S N. Journal of Synthetic Crystals, 2015, 44(12), 3639 (in Chinese).
蒋自鹏, 铁生年. 人工晶体学报, 2015, 44(12), 3639.
[1] 张文博, 石建丽, 马建中, 卫林峰, 范倩倩. 荧光碳量子点及其在防伪中的应用[J]. 材料导报, 2022, 36(7): 20110186-11.
[2] 魏宁, 铁生年. 功能化碳纳米纤维增强芒硝基相变储能材料的热性能[J]. 材料导报, 2022, 36(6): 21050177-7.
[3] 曾静, 胡石林, 吴全峰, 齐鑫, 周文辉. 化学气相沉积法制备高纯硼粉的技术进展[J]. 材料导报, 2021, 35(5): 5089-5094.
[4] 王杰, 魏奎先, 马文会, 伍继君. 工业微硅粉应用及提纯研究进展[J]. 材料导报, 2020, 34(23): 23081-23087.
[5] 王三胜, 王莹. 石墨提纯工艺研究进展综述和新技术展望[J]. 材料导报, 2020, 34(Z2): 147-151.
[6] 陈辉, 严大洲, 万烨, 孙强, 张邦洁. 区熔用多晶硅棒制备技术浅析[J]. 材料导报, 2020, 34(Z2): 152-156.
[7] 于晓晨, 党快乐, 宋泽钰, 李华健, 曹欣, 吴俊, 樊继斌, 段理, 赵鹏. 一步溶剂热法合成高催化性能的Gd3+掺杂氧化锌纳米晶体[J]. 材料导报, 2020, 34(14): 14003-14008.
[8] 孔令宇, 黄慧娟, 杨喜, 马建锋, 尚莉莉, 刘杏娥. 生物质基炭气凝胶复合材料在超级电容器中应用的研究进展[J]. 材料导报, 2019, 33(Z2): 32-37.
[9] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[10] 李秀丽, 铁生年. 速溶高粘羧甲基纤维素钠对不同相变温度梯度芒硝基相变储能材料性能的影响[J]. 材料导报, 2018, 32(22): 3848-3852.
[11] 马浩, 杨瑞霞, 李春静, 韩应宽. 二硫化钼纳米片的制备及其光敏和气敏特性研究[J]. 材料导报, 2018, 32(6): 860-864.
[12] 王燕锋,赵晓华,李庚英. 干湿变化对多壁碳纳米管/水泥砂浆压阻效应的影响[J]. 《材料导报》期刊社, 2017, 31(24): 20-25.
[13] 祁帅, 黄国强. 液相剥离法制备石墨烯的新进展*[J]. 《材料导报》期刊社, 2017, 31(17): 34-40.
[14] 祁帅, 黄国强. 超声波辅助二元溶剂剥离制备石墨烯*[J]. CLDB, 2017, 31(9): 72-76.
[15] 郭思彤,吴会军,杨丽修,刘燕妮,杨建明. 制备参数对SiO2气凝胶结构与性能影响的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 38-44.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed