Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (17): 34-40    https://doi.org/10.11896/j.issn.1005-023X.2017.017.006
  材料综述 |
液相剥离法制备石墨烯的新进展*
祁帅, 黄国强
天津大学化工学院,天津 300072
Progress of Graphene Preparation by Liquid-phase Exfoliation
QI Shuai, HUANG Guoqiang
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072
下载:  全 文 ( PDF ) ( 1596KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯是一种具有独特结构和优异性能的二维材料,自从2004 年其被成功制备以来,迅速成为材料、化学、物理和工程领域的研究热点。目前,制备石墨烯的方法有很多,包括化学氧化还原法、化学气相沉积法以及液相剥离法等,其中液相剥离法是一种非常重要的制备方法,有望实现高质量石墨烯的工业化生产。主要总结了以超声波作为动力的液相剥离法的相关报道,并对其进行了分类讨论。解释了超声波的作用,着重介绍了以纯溶剂和二元溶剂为剥离溶剂的液相剥离方法,以及助剂辅助剥离的液相剥离方法的研究进展,并综述了各种方法的剥离机理。同时提出了提高石墨剥离效率的方法,指出了选择新溶剂或助剂的原则,旨在为研究更高效生产高质量石墨烯的方法提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
祁帅
黄国强
关键词:  石墨烯  液相剥离法  制备    
Abstract: Graphene is a two-dimensional material with unique structure and excellent properties. Since it was successfully prepared for the first time in 2004, graphene has become a hot point of many fields such as materials, chemistry, physics and engineering. Presently, several preparation methods of graphene have been reported, including chemical oxidation-reduction, chemical vapor deposition(CVD) and liquid-phase exfoliation(LPE), etc. Among them, LPE is an important way to realize industrialization. This review article mainly summarizes the recent researches about the LPE with ultrasonic. The effect of ultrasonic is simply explained and the LPE through pure solvents or binary solvents, and the LPE with additives are summarized. Furthermore, the mechanisms of different ways are discussed. Finally, several methods to improve the exfoliation efficiency are proposed and the way of choosing new solvents or additives is pointed out, aiming at providing references for developing more effective exfoliation systems or new methods to prepare high quality graphene more effectively.
Key words:  graphene    liquid-phase exfoliation    preparation
               出版日期:  2017-09-10      发布日期:  2018-05-07
ZTFLH:  TQ127.1  
基金资助: 国家自然科学基金(21676197)
通讯作者:  黄国强:通讯作者,男,1973年生,博士,副教授,主要从事多晶硅精馏领域的研究、开发与工程设计以及石墨烯制备工艺研究 Tel:022-27891125 E-mail:hgq@tju.edu.cn   
作者简介:  祁帅:男,1991年生,硕士研究生,主要从事剥离制备石墨烯工艺的研究 E-mail:qishuai@tju.edu.cn
引用本文:    
祁帅, 黄国强. 液相剥离法制备石墨烯的新进展*[J]. 《材料导报》期刊社, 2017, 31(17): 34-40.
QI Shuai, HUANG Guoqiang. Progress of Graphene Preparation by Liquid-phase Exfoliation. Materials Reports, 2017, 31(17): 34-40.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.017.006  或          http://www.mater-rep.com/CN/Y2017/V31/I17/34
1 Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004,306(5696):666.
2 Han Ping, Li Xiaoru, Gu Zheng, et al. Progress of synthesis graphene[J]. J Bohai University: Nat Sci Ed, 2014,35(3):294(in Chinese).
韩萍, 李晓茹, 谷正,等. 石墨烯的制备研究进展[J]. 渤海大学学报:自然科学版,2014,35(3):294.
3 He Dafamg, Wu Jian, Liu Zhanjian, et al. Recent advances in pre-paration of graphene for applications[J]. J Chem Ind Eng (China),2015,66(8):2888(in Chinese).
何大方, 吴健, 刘战剑,等. 面向应用的石墨烯制备研究进展[J]. 化工学报,2015,66(8):2888.
4 Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun,2008,146(9-10):351.
5 Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Lett, 2008,8(3):902.
6 Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385.
7 Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature,2004,427(6974):523.
8 Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors[J]. Nano Lett,2008,8(10):3498.
9 Eda G, Chhowalla M. Graphene-based composite thin films for electronics[J]. Nano Lett,2009,9(2):814.
10 Parvez K, Yang S, Feng X, et al. Exfoliation of graphene via wet chemical routes[J]. Synth Metals,2015,210:123.
11 Alaferdov A V, Gholamipour-Shirazi A, Canesqui M A, et al. Size-controlled synthesis of graphite nanoflakes and multi-layer graphene by liquid phase exfoliation of natural graphite[J]. Carbon,2014,69(2):525.
12 Hernandez Y, Nicolosi V, Lotya M, et al. High yield production of graphene by liquid phase exfoliation of graphite[J]. Nat Nanotech-nol,2008,3(9):563.
13 Gayathri S, Jayabal P, Kottaisamy M, et al. Synthesis of few layer graphene by direct exfoliation of graphite and a Raman spectroscopic study[J]. AIP Adv,2014,4(2):1296.
14 Sun Z, Huang X, Liu F, et al. Amine-based solvents for exfoliating graphite to graphene outperform the dispersing capacity of N-methyl-pyrrolidone and surfactants[J]. Chem Commun,2014,50(72):10382.
15 Wang X, Fulvio P F, Baker G A, et al. Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids[J]. Chem Commun, 2010,46(25):4487.
16 Matsumoto M, Saito Y, Park C, et al. Ultrahigh-throughput exfo-liation of graphite into pristine ‘single-layer’ graphene using microwaves and molecularly engineered ionic liquids[J]. Nat Chem,2015, 7(9):730.
17 Raccichini R, Balducci A, Varzi A, et al. Method of producing graphene by exfoliation of graphite: WO,2015131933[P]. 2015-09-11.
18 Hossain M M, Park O K, Hahn J R, et al. High yield and high concentration few-layer graphene sheets using solvent exfoliation of graphite with pre-thermal treatment in a sealed bath[J]. Mater Lett,2014,123(123):90.
19 Liu W, Tanna V A, Yavitt B M, et al. Fast production of high-qua-lity graphene via sequential liquid exfoliation[J]. ACS Appl Mater Interfaces,2015,7(49):27027.
20 Hernandez Y, Lotya M, Rickard D, et al. Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery[J]. Langmuir,2010,26(5):3208.
21 Chia J S Y, Tan M T T, et al. A novel one step synthesis of graphene via sonochemical-assisted solvent exfoliation approach for electrochemical sensing application[J]. Chem Eng J,2014,249:270.
22 Dang D K, Kim E J. Solvothermal-assisted liquid-phase exfoliation of graphite in a mixed solvent of toluene and oleylamine[J]. Nanoscale Res Lett,2015,10(1):1.
23 Chen J, Shi W, Fang D, et al. A binary solvent system for improved liquid phase exfoliation of pristine graphene materials[J]. Carbon,2015,94:405.
24 Xu M, Zhang W, Yang Z, et al. One-pot liquid-phase exfoliation from graphite to graphene with carbon quantum dots[J]. Nanoscale,2015,7(23):10527.
25 Jagiello J, Judek J, Zdrojek M, et al. Production of graphene composite by direct graphite exfoliation with chitosan[J]. Mater Chem Phys,2014,148(3):507.
26 Niazi M B K. Effect of concentration of surfactant on the exfoliation of graphite to graphene in aqueous media[J]. Nanomater Nanotech-nol,2016,6(14):1.
27 Unalan I U, Wan C, Trabattoni S, et al. Polysaccharide-assisted rapid exfoliation of graphite platelets into high quality water-disper-sible graphene sheets[J]. RSC Adv,2015,5(34):26482.
28 Lotya M, Hernandez Y, King P J, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions[J]. J Am Chem Soc,2009, 131(10):3611.
29 Liu W, Zhou R, Zhou D, et al. Lignin-assisted direct exfoliation of graphite to graphene in aqueous media and its application in polymer composites[J]. Carbon,2015, 83:188.
30 Zhang L, Zhang Z, He C, et al. Rationally designed surfactants for few-layered graphene exfoliation: Ionic groups attached to electron-deficient π-conjugated unit through alkyl spacers[J]. ACS Nano,2014,8(7):6663.
31 Ager D, Vasantha V A, Crombez R, et al. Aqueous graphene dispersions-optical properties and stimuli-responsive phase transfer[J]. ACS Nano,2014, 8(11):11191.
32 Tung T T, Yoo J, Alotaibi F K, et al. Graphene oxide-assisted li-quid phase exfoliation of graphite into graphene for highly conductive film and electromechanical sensors[J]. ACS Appl Mater Interfaces,2016,8(25):16521.
33 Naboka O, Yim C H, Abu-Lebdeh Y. Graphene/Na carboxymethyl cellulose composite for Li-ion batteries prepared by enhanced liquid exfoliation[J]. Mater Sci Eng B,2016,213:41.
34 Shinde D B, Brenker J, Easton C D, et al. Shear assisted electrochemical exfoliation of graphite to graphene[J]. Langmuir,2016,32(14):3552.
35 Cui J, Song Z, Xin L, et al. Exfoliation of graphite to few-layer graphene in aqueous media with vinylimidazole-based polymer as high-performance stabilizer[J]. Carbon,2016,99:249.
36 Ciesielski A, Haar S, Gemayel M, et al. Harnessing the liquid-phase exfoliation of graphene using aliphatic compounds: A supramolecular approach[J]. Angew Chem-Int Ed,2014,53(39):10355.
37 Zhang R, Zhang B, Sun S. Preparation of high-quality graphene with a large-size by sonication-free liquid-phase exfoliation of gra-phite with a new mechanism[J]. RSC Adv,2015,5(56):44783.
38 Hui S. A supramolecular strategy to leverage the liquid-phase exfo-liation of graphene in the presence of surfactants: Unraveling the role of the length of fatty acids[J]. Small,2015,11(14):1691.
39 Sebastien H, Matteo B, Jian X, et al. Liquid-phase exfoliation of graphite into single and few layers graphene with α-functionalized alkanes[J]. J Phys Chem Lett,2016,7(14):2714.
40 Usca G T, Hernandez-Ambato J, Pace C, et al. Liquid-phase exfo-liated graphene self-assembled films: Low-frequency noise and thermal-electric characterization[J]. Appl Surf Sci,2016,380:268.
41 Mutyala S, Mathiyarasu J. Preparation of graphene nanoflakes and its application for detection of hydrazine[J]. Sens Actuat B: Chem,2015,210:692.
42 Chen J, Shi W, Chen Y, et al. Eco-friendly exfoliation of graphite into pristine graphene with little defect by a facile physical treatment[J]. Appl Phy Lett,2016,108(7):31051.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 王坤宇, 冯运莉, 柳昆. 纳米复相永磁材料的研究进展[J]. 材料导报, 2019, 33(z1): 116-121.
[4] 郑贝贝, 邵玲. 国内Bi系高温超导材料制备工艺研究进展[J]. 材料导报, 2019, 33(z1): 318-320.
[5] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[6] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[7] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[8] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[9] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[10] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[11] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[12] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[13] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[14] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[15] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed