Please wait a minute...
材料导报  2022, Vol. 36 Issue (1): 20120270-4    https://doi.org/10.11896/cldb.20120270
  金属与金属基复合材料 |
超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究
杨东青, 王小伟, 彭勇, 周琦, 王克鸿
南京理工大学受控电弧智能增材技术工信部重点实验室,南京 210094
Microstructure and Properties of 316L Stainless Steel Fabricated by Gas Mental Arc Additive Manufacturing with Ultrasonic Vibration Treatment
YANG Dongqing, WANG Xiaowei, PENG Yong, ZHOU Qi, WANG Kehong
Key Laboratory of Controlled Arc Intelligent Additive Manufacturing Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
下载:  全 文 ( PDF ) ( 6005KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用超声冲击辅助熔化极电弧增材进行了316L不锈钢单墙体成形试验,对比研究了超声冲击辅助对成形件组织和性能的影响。结果表明,成形件的组织均由奥氏体和铁素体组成。引入超声冲击后成形件组织细化,晶粒尺寸平均值较未冲击件晶粒尺寸平均值减小了57.1%;铁素体含量由未冲击件的2.4%增加至超声冲击后的6.7%。成形件显微硬度和拉伸性能提高,显微硬度平均值为(182±8.9)HV,较未冲击件提高了5.2%。横向抗拉强度和延伸率分别为(595±14.4) MPa、(44±6.8)%,纵向抗拉强度和延伸率分别为(604±20.7) MPa、(36±3.4)%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨东青
王小伟
彭勇imgsrc='邮箱.tif'/>
周琦
王克鸿
关键词:  电弧增材制造  超声冲击  316L不锈钢  微观组织  力学性能    
Abstract: The forming test of 316L stainless steel thin wall part was carried out with ultrasonic impact assisting gas metal arc additive manufacture (GMA-AM), and the influence of ultrasonic impact assist on the microstructure and properties of the part was comparatively studied. The results show that the microstructure of the wall part is composed of austenite and ferrite. After adding the ultrasonic vibration treatment in the additive manufacture process, the microstructure of the part is refined with the average grain size is 57.1% less than the grain of the un-impacted part; the content of ferrite is increased from 2.4% in the un-impacted part to 6.7% in the ultrasonic vibration treatment part. The hardness and tensile properties of the thin wall parts are improved, and the hardness of the sample is (182±8.9)HV which is 5.2% higher than that of the un-impacted parts. The tensile strength and elongation in the horizontal direction are (595±14.4) MPa and (44±6.8)%, respectively, and that in the vertical direction are (604±20.7) MPa and (36±3.4)%.
Key words:  wire arc additive manufacture    ultrasonic vibration treatment    316L stainless steel    microstructure    mechanical property
出版日期:  2022-01-13      发布日期:  2022-01-13
ZTFLH:  TG441.7  
基金资助: 国家自然科学基金青年基金(51805266);中国博士后科学基金(2020M682930)
通讯作者:  ypeng@njust.edu.cn   
作者简介:  杨东青,南京理工大学材料学院讲师。2017年10月毕业于哈尔滨工业大学,获得材料加工博士学位。主要从事高效电弧增材/焊接工艺等方面的研究。在国内外重要期刊发表SCI、EI论文10余篇,申报/授权发明专利5项。
彭勇,南京理工大学材料学院副研究员。南京理工大学材料加工工程专业博士学位。主要从事电弧增材工艺方法与设备、高能束流焊接方法与设备方面的研究。在国内外重要期刊发表SCI、EI论文20余篇,申报发明专利81项,已授权21项,获国防、兵器、航空集团科学技术进步奖四项。
引用本文:    
杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
YANG Dongqing, WANG Xiaowei, PENG Yong, ZHOU Qi, WANG Kehong. Microstructure and Properties of 316L Stainless Steel Fabricated by Gas Mental Arc Additive Manufacturing with Ultrasonic Vibration Treatment. Materials Reports, 2022, 36(1): 20120270-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120270  或          http://www.mater-rep.com/CN/Y2022/V36/I1/20120270
[1] Jorn M, Ding J L, Lockett H,et al. International Journal of Product Development, 2014, 19(1-3), 2.
[2] Huang C P, Huang S W, Liu F C. Machinist Metal Forming, 2016(2), 33(in Chinese).
黄春平,黄硕文,刘奋成. 金属加工(热加工), 2016(2), 33.
[3] Tabernero I, Paskual A, álvarez P. Procedia CIRP, 2018, 68,358.
[4] Xiong J, Zhang G J, Zhang W H. International Journal of Advanced Manufacturing Technology, 2015, 80(9-12), 1767.
[5] Xiong J T, Geng H B, Lin X, et al. Aviation Welding Technology, 2015(23), 6(in Chinese).
熊江涛, 耿海滨, 林鑫,等.航空制造技术, 2015(23),6.
[6] Jiang H L, Yao J K, Yin F L. Hot Working Technology, 2018, 47(18), 5(in Chinese).
江宏亮, 姚巨坤, 殷凤良.热加工工艺, 2018, 47(18),5.
[7] Wang Y Q, Yuan H X, Si Y J, et al. Steel Construction, 2010, 25(2),1(in Chinese).
王元清, 袁焕鑫, 石永久,等.钢结构, 2010, 25(2),1.
[8] Chen Z H, Weng K, Liu H B,et al. Industrial Construction, 2012, 42(5),55(in Chinese).
陈志华, 翁凯, 刘红波,等.工业建筑, 2012, 42(5),55.
[9] Shu F, Ma C W, Zhang T L, et al. Steel Construction, 2019, 24(48),71(in Chinese).
苏峰, 马春伟, 张天雷,等.工业建筑, 2019, 24(48),71.
[10] Wang C, Liu T G, Zhu P, et al. Materials Science and Engineering: A, 2020, 796, 140006.
[11] Ren X H, Wang L L, Dong C L, et al. Welding, 2019(9), 6(in Chinese).
任香会, 王磊磊, 董春林,等.焊接, 2019(9),6.
[12] He Z, Hu Y, Qu H T,et al. Aerospace Manufacturing Technology, 2016,12(6), 11(in Chinese).
何智, 胡洋, 曲宏韬, 等. 航天制造技术, 2016, 12(6), 11.
[13] Xu M F, Chen Y H,Deng H B, et al. Journal of Netshape Forming Engineering, 2019, 11(5),142(in Chinese).
许明方,陈玉华,邓怀波, 等. 精密成形工程, 2019, 11(5),142.
[14] Chen W, Chen Y H, Wen T T, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(10),2280(in Chinese).
陈伟, 陈玉华, 温涛涛, 等. 中国有色金属学报, 2020, 30(10),2280.
[15] Yuan D, Shao S Q, Guo C H,et al. Ultrasonics Sonochemistry, 2021, 73, 105472.
[16] Wu S S, Liu Y Q. Principle of materials forming, version 2, China Machine Press, 2008, pp.41(in Chinese).
吴树森,柳玉起. 材料成形原理, 第2版, 机械工业出版社, 2008, pp. 41.
[1] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[2] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[3] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[4] 欧阳柳章, 彭琢雅, 王辉, 刘江文, 朱敏. 三级金属氢化物氢压缩机设计及氢压缩材料的研究进展[J]. 材料导报, 2022, 36(1): 21030081-11.
[5] 赵燕春, 李暑, 李春玲, 赵鹏彪, 李文生, 寇生中, 阎峰云. 热处理对铁基中熵合金微观结构及力学性能的影响[J]. 材料导报, 2022, 36(1): 20090161-5.
[6] 杨佳行, 韩永典, 徐连勇. 瞬态电流键合对Sn-Ag-Cu钎料焊点界面反应的影响[J]. 材料导报, 2022, 36(1): 20100132-5.
[7] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[8] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[9] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[10] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[11] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[12] 曹鹏, 雷高峰, 苏成明, 舒林森, 石舒婷, 贾北北, 田伟红. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(z2): 424-427.
[13] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[14] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[15] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed