Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 81-85    
  无机非金属及其复合材料 |
水热处理增强磷酸钴催化臭氧分解性能的研究
杜广智1,2, 张骞1, 廖继飞1, 林玉1, 伍凡1, 向将来1, 王晓如1, 张瑞阳1
1 西南石油大学油气藏地质及开发工程国家重点实验室,成都 610500
2 西南石油大学新能源与材料学院,新能源材料及技术研究中心,成都 610500
Improved Catalytic Ozone Degradation over Hydrothermal-treated Cobalt Phosphate
DU Guangzhi1,2, ZHANG Qian1, LIAO Jifei1, LIN Yu1, WU Fan1, XIANG Jianglai1, WANG Xiaoru1, ZHANG Ruiyang1
1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
2 The Center of New Energy Materials and Technology, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
下载:  全 文 ( PDF ) ( 3963KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 臭氧污染逐渐取代PM 2.5成为大气首要污染物,因此臭氧污染是亟待解决的环境问题。在众多臭氧治理方法中,催化分解臭氧是较为环保、低能耗和低二次污染的臭氧治理方法。钴基无机酸盐由于丰富的表面氧和良好的电子传递能力,在臭氧催化分解方面具有很大的潜力。本文首先通过简单的共沉淀法制备了不同的钴基无机酸盐,并用于催化臭氧分解的研究,结果表明Co3(PO4)2(G-CP)具有相对优异的催化臭氧分解性能。随后,对G-CP样品进一步水热处理,得到改性的G-CP(Hy-CP),实现了催化臭氧分解的活性和稳定性的有效提升。水热处理12 h的Hy-CP (Hy-CP-12)在与臭氧反应6 h后仍保持76%的分解效率,相较于G-CP活性提升了2.1倍。利用XRD、SEM、BET和XPS等测试手段,证明水热处理会使G-CP的晶体结构和形貌发生变化,并且增加了G-CP的比表面积。此外,水热处理会明显增加G-CP的表面氧含量,这对臭氧分解具有重要作用,因而可以有效改善G-CP的臭氧催化分解活性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜广智
张骞
廖继飞
林玉
伍凡
向将来
王晓如
张瑞阳
关键词:  磷酸钴  共沉淀  催化分解臭氧  水热法    
Abstract: Ozone pollution has gradually replaced PM 2.5 as the primary air pollutant,posing serious threaten to human health. Various approaches have thus been developed to resolve this problem. Among them, the catalytic decomposition technique has been extensively studied because of its environmentally friendliness, low energy consumption and low secondary pollution. Cobalt-based inorganic acid salts possessed abundant surface oxygen and exhibited excellent electron transport capabilities, possessing great potential in the ozone decomposition. In this study, different cobalt-based inorganic acid salts were prepared by a simple co-precipitation method and used as the catalysts for the ozone decomposition, among which the Co3(PO4)2 (G-CP) sample exhibits the highest performance. Subsequently, the G-CP sample was subjected to hydrothermal treatment for several hours for obtaining Hy-CP catalyst, and it was found that the activity and stability of ozone removal were significantly improved compared to G-CP. It is noting that 76% ozone removal rate can be maintained over Hy-CP-12 after 6 hours, which is 2.1 times higher than that of G-CP. The G-CP crystal structure and morphology will change with the hydrothermal process by XRD and SEM. BET XPS. In addition, the hydrothermal process significantly increases the specific surface area and surface oxygen content, which is conducive to the ozone decomposition, thereby improving the decomposition activity of G-CP.
Key words:  cobalt phosphate    co-precipitation    catalytic decomposition ozone    hydrothermal method
                    发布日期:  2021-12-09
ZTFLH:  TQ4  
通讯作者:  zhangqian@swpu.edu.cn   
作者简介:  杜广智,西南石油大学,硕士研究生。2014年9月至2018年6月,在西南石油大学获得学士学位。2018年九月至今,在西南石油大学攻读硕士研究生。已发表SCI学术论文1篇。
张骞,博士,西南石油大学,副教授,硕士研究生导师。2011年毕业于重庆大学材料科学与工程学院。主要研究方向为室内空气净化、整体式催化以及电化学。现为“氧化功能材料与应用”四川省属高校科研创新团队、“能量转换与储存先进材料”四川省青年科技创新团队科研骨干,主持国家国家自然科学基金、国家重点实验室、四川省教育厅科研项目各1项。发表SCI学术论文10余篇,获得国家发明专利2项。
引用本文:    
杜广智, 张骞, 廖继飞, 林玉, 伍凡, 向将来, 王晓如, 张瑞阳. 水热处理增强磷酸钴催化臭氧分解性能的研究[J]. 材料导报, 2021, 35(z2): 81-85.
DU Guangzhi, ZHANG Qian, LIAO Jifei, LIN Yu, WU Fan, XIANG Jianglai, WANG Xiaoru, ZHANG Ruiyang. Improved Catalytic Ozone Degradation over Hydrothermal-treated Cobalt Phosphate. Materials Reports, 2021, 35(z2): 81-85.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/81
1 Mao J, Wang L, Lu C, et al. Journal of Environmental Sciences, 2020, 92(8), 187.
2 Ferkol T, Schraufnagel D.Annals of the American Thoracic Society, 2014, 11(3), 404.
3 Shang Y, Sun Z, Cao J, et al. Environment international, 2013, 54(6), 100.
4 Feng Z, Kobayashi K, Ainsworth EA.Global Change Biology, 2008, 14(11), 2696.
5 Zhang J J, Wei Y, Fang Z.Frontiers in Immunology, 2019, 10(2), 518.
6 Dhandapani B, Oyama S T.Applied Catalysis B: Environmental, 1997, 11(2), 129.
7 Haruta M, Daté M.Applied Catalysis A: General, 2001, 222(1-2), 427.
8 Kameya T, Urano K.Journal of Environmental Engineering, 2002, 128(3), 286.
9 Naydenov A, Konova P, Nikolov P et al.Catalysis Today, 2008, 137(2-4), 471.
10 Li X, Ma J, Zhang C, et al. Journal of Environmental Science (China), 2019, 80(2), 159.
11 Nikolov P, Genov K, Konova P, et al. Journal of Hazardous Materials,2010, 184(1-3), 16.
12 Tao L, Zhang Z, Chen P et al. Applied Surface Science,2019, 481(84), 802.
13 Yu Y, Liu S, Ji J, Huang H.Catalysis Science & Technology, 2019, 9(18), 5090.
14 Chen X, Zhao Z, Liu S, et al. Journal of Rare Earths, 2020, 38(2), 175.
15 Stoyanova M, Konova P, Nikolov P et al. Chemical Engineering Journal,2006, 122(1-2), 41.
16 Kim S S, Hong S C, Ozone: Science & Engineering, 2013, 35(6), 514.
17 Tang W X, Liu H D, Wu X F, et al. Ozone: Science & Engineering, 2014, 36(5), 502.
18 Jia J, Zhang P, Chen L.Catalysis Science & Technology, 2016, 6(15), 5841.
19 Rakitskaya T L, Truba A S, Ennan A A, et al. Acta Physica Polonica A, 2018, 133(4), 1079.
20 Liu Y, Yang W, Zhang P, Zhang J.Applied Surface Science, 2018, 442(2), 640.
21 Liu H, Liu X, Mao Z, et al. Journal of Power Sources, 2018, 400(24), 190.
22 Samal A, Swain S, Satpati B, et al. ChemSusChem, 2016, 9(22), 3150.
23 Xiao Z, Bao Y, Li Z, et al. ACS Applied Energy Materials, 2019, 2(2), 1086.
24 Shamraiz U, Badshah A, Raza B. Langmuir, 2020, 36(9), 2223.
25 Duraisamy N, Arshid N, Kandiah K, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(8), 7435.
26 Gong S, Chen J, Wu X, et al. Catalysis Communications, 2018, 106(55), 25.
27 Gong S, Wang A, Wang Y, et al. ACS Applied Nano Materials,2019, 3(1), 597.
28 Gong S, Xie Z, Li W et al. Applied Catalysis B: Environmental, 2019, 241(6), 578.
29 Li X, Ma J, Yang L et al. Environmental Science Technology, 2018, 52(21), 12685.
30 Liu Y, Zhang P.The Journal of Physical Chemistry C, 2017, 121(42), 23488.
31 Yang L, Ma J, Li X, et al. Industrial & Engineering Chemistry Research, 2019, 59(1), 118.
[1] 李雅洁, 刘剑, 徐晨, 邢镔. 水热法制备固态电解质Li3xLa2/3-xTiO3粉末[J]. 材料导报, 2021, 35(z2): 8-12.
[2] 王三胜, 王莹. 石墨提纯工艺研究进展综述和新技术展望[J]. 材料导报, 2020, 34(Z2): 147-151.
[3] 杨露, 郭敏, 宋志成, 刘大伟, 倪玉凤. 基于高长径比TiO2纳米线的染料敏化太阳能电池光阳极的制备[J]. 材料导报, 2020, 34(Z1): 7-12.
[4] 郭德双, 王登魁, 王新伟, 孟兵恒, 方铉, 房丹, 魏志鹏. 氢气退火对ITO纳米颗粒能带结构的影响[J]. 材料导报, 2020, 34(Z1): 26-28.
[5] 莫若飞. 多孔腔骰子形和六足形氧化亚铜的水热合成[J]. 材料导报, 2020, 34(Z1): 148-152.
[6] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[7] 刘盼, 朱彬, 吕东风, 崔帅, 崔燚, 魏颖娜, 魏恒勇, 卜景龙. 多级结构CoNiO2/TiN复合纤维的制备及电化学性能[J]. 材料导报, 2020, 34(10): 10024-10029.
[8] 刘光蓉, 李露, 张祖超, 冯支斌. 人造金红石母液制备α-Fe2O3纳米颗粒的研究[J]. 材料导报, 2019, 33(Z2): 150-153.
[9] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[10] 吕斌, 余亚金, 高党鸽, 马建中, 苏姣姣. 微波水热法制备磺酸盐型Gemini表面活性剂及其表征[J]. 材料导报, 2019, 33(2): 357-362.
[11] 祝璐,尹沛羊,邓湘云,李建保,张伟,金宏. Ce3+掺杂钛酸钡纳米管薄膜的制备与性能[J]. 《材料导报》期刊社, 2018, 32(11): 1924-1927.
[12] 于晓晨, 张丹丹, 李哲, 王高凯, 高孟磊, 段理, 蒋自强, 王新刚, 赵鹏. Er3+/Yb3+掺杂NaGd(WO4)2粉体的制备与发光性能*[J]. 《材料导报》期刊社, 2017, 31(8): 1-5.
[13] 李金涛, 吴玉会, 刘卓, 赵晶, 王生力. 水热合成一维α-MoO3纳米棒及其湿敏性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 34-37.
[14] 张冠群,许州,刘建雄,杨艳蓉,刘成,程琪,于晓华. 二次水热法制备鸟巢状TiO2/Co3O4纳米结构及其锂电性能*[J]. 材料导报编辑部, 2017, 31(22): 5-9.
[15] 付兵, 欧娅, 刘欢, 顾曼琦, 陈卓, 杨锦瑜. Ba2+共掺杂YPO4∶Tb3+荧光材料的水热合成与荧光性能*[J]. 《材料导报》期刊社, 2017, 31(18): 16-20.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed