Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 655-659    
  高分子与聚合物基复合材料 |
基于NSGM(1,3)模型的短切聚丙烯纤维-磷建筑石膏复合材料强度预测
吴磊, 陶忠, 赵志曼, 陶燕, 张毅, 刘卓
昆明理工大学建筑工程学院,昆明 650500
Strength Prediction of Short-cut PP Fiber-Phosphorus Building Gypsum Composites Based on NSGM(1,3) Model
WU Lei, TAO Zhong, ZHAO Zhiman, TAO Yan, ZHANG Yi, LIU Zhuo
Faculty of Civil Engineering and Architecture, Kunming University of Science and Technology, Kunming 650500, China
下载:  全 文 ( PDF ) ( 2107KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究短切聚丙烯纤维长度与掺量对短切聚丙烯纤维-磷建筑石膏复合材料强度的影响规律,本文采用均匀试验方案,分析了3 mm、6 mm、9 mm的短切聚丙烯纤维在0%~2.8%的掺量下,复合材料绝干抗折强度、抗压强度的变化情况,并采用NSGM(1,3)模型对复合材料强度进行了建模与预测,结果表明:相同纤维掺量下,随着纤维长度的增加,复合材料的绝干抗折强度和抗压强度均增大;相同纤维长度下,随着纤维掺量的增加,复合材料的绝干抗折强度和抗压强度均呈现先增大后减小的趋势;本文所建立NSGM(1,3)模型可以实现对短切聚丙烯纤维-磷建筑石膏的绝干抗折强度、抗压强度的有效模拟和预测,平均相对模拟误差为1.04%和1.57%,平均相对预测误差为6.80%和7.13%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴磊
陶忠
赵志曼
陶燕
张毅
刘卓
关键词:  磷建筑石膏  聚丙烯纤维  纤维掺量  纤维长度  强度预测  NSGM(1,3)    
Abstract: In order to investigate the influence of the length and doping amount of short-cut polypropylene fibers on the strength of short-cut polypropy-lene fiber-phosphorus gypsum composites, a homogeneous experimental scheme was used to analyze the changes of the adiabatic flexural strength and compressive strength of 3mm, 6mm and 9mm short-cut polypropylene fibers at the doping amounts of 0%—2.8%. The NSGM(1,3) model was used to model and predict the strength of the composites, and the results showed that: with the increase of fiber length, the adiabatic flexural strength and compressive strength of the composites increased with the increase of fiber length at the same fiber doping level; with the increase of fiber doping level, the adiabatic flexural strength and compressive strength of the composites showed a trend of first increasing and then decreasing at the same fiber length; the NSGM(1,3) model established in this paper was used to predict the strength of the composites. The NSGM(1,3) model can achieve the effective simulation and prediction of the dry flexural strength and compressive strength of short-cut polypropy-lene fiber-phosphorus building gypsum with the average relative simulation error of 1.04% and 1.57%, and the average relative prediction error of 6.80% and 7.13%.
Key words:  phosphorus building gypsum    polypropylene fiber    fiber content    fiber length    strength prediction    NSGM(1,3)
                    发布日期:  2021-12-09
ZTFLH:  TQ177.3+2  
基金资助: 国家自然科学基金(51662022);云南省科技厅重点研发计划(202003AC100001);云南省科技厅工业高新技术专项(202003AA080032)
通讯作者:  tsy0410km@126.com   
作者简介:  吴磊,昆明理工大学建筑工程学院土木工程专业博士研究生,主要从事建筑材料方向的研究,重点研究磷石膏在建筑材料领域的资源化利用。发表中文核心文章18篇,申报或授权实用新型和发明专利10余项。
陶忠,昆明理工大学建筑工程学院,教授,博导,博士后。主要从事建筑结构与建筑材料领域的研究,重点研究钢结构与结构抗震。在国内外重要期刊发表文章70余篇,申报或授权实用新型和发明专利40余项。
引用本文:    
吴磊, 陶忠, 赵志曼, 陶燕, 张毅, 刘卓. 基于NSGM(1,3)模型的短切聚丙烯纤维-磷建筑石膏复合材料强度预测[J]. 材料导报, 2021, 35(z2): 655-659.
WU Lei, TAO Zhong, ZHAO Zhiman, TAO Yan, ZHANG Yi, LIU Zhuo. Strength Prediction of Short-cut PP Fiber-Phosphorus Building Gypsum Composites Based on NSGM(1,3) Model. Materials Reports, 2021, 35(z2): 655-659.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/655
1 Qiang Wang, Yong Cui, Junfeng Xue. Construction and Building Mate-rials,2020,230,117014.
2 Yong Cui, Qiang Wang, Junfeng Xue. Journal of Materials in Civil Engineering, 2020,32(12),04020379.
3 Chernysh Yelizaveta,Yakhnenko Olena,Chubur Viktoriia, et al. Applied Sciences, 2021, 11(4),1575.
4 Song Han, Zhi Man Zhao, Yao Hua Cheng, et al. Advanced Materials Research,2014,3482,837.
5 Tuqa Waleed Ahmed, Ahmed A. Mohammed Ali, Roua Suhail Zidan. Construction and Building Materials,2020,241,118010.
6 Chandra Sekhar Das, Tanish Dey, Ramkrishna Dandapat, et al. Construction and Building Materials,2018,189,649.
7 李国忠, 高子栋, 马庆宇. 建筑材料学报,2010,13(4),430.
8 吴磊, 赵志曼, 田睿, 等. 硅酸盐通报,2018,37(12),4022.
9 Cong Zhu, Jianxin Zhang, Jiahui Peng, et al. Construction and Building Materials,2018,163,695.
10 Huang Min, Zhao Yuru, Wang Haonan, et al. Advances in Civil Engineering, DOI:10.1155/2021/6673416.
11 Bin Ahmed Farabi, Abid Ahsan Khan, Shariff Tasnuva, et al. Materials Today: Proceedings,2021,38(5),3269.
12 Sevim Umur Korkut, Bilgic Hasan Huseyin, Cansiz Omer Faruk, et al. Construction and Building Materials,2021,271,121584.
13 Haque Mohaiminul, Ray Sourav, Mita Ayesha Ferdous, et al. Case Stu-dies in Construction Materials,2021,14,e00505.
14 Zeng Bo,Zhou Meng,Liu Xianzhou, et al. Energy Reports,2020,6,1608.
15 刘思峰, 杨英杰. 南京航空航天大学学报,2015,47(1),1.
16 Xiaohui Luo, Xiaoqing Yan, Yusong Chen, et al. Journal of Petroleum Exploration and Production Technology,2020,8,3601.
17 Maolin Cheng, Jiano Li, Yun Liu, et al. Sustainability,2020,12(2),1.
18 Pingping Xiong, Jia Shi, Lingling Pei, et al. Sustainability,2019,11(14),3832.
19 Rui Xiong,Lu Wang. Applied Mechanics and Materials,2015,744,1244.
20 张开银, 毛昌庆, 向小斌, 等. 武汉理工大学学报,2008(8),117.
21 Zhu Lihua, Zhao Cheng, Dai Jun. Construction and Building Materials,2021.273,121750.
22 周宁, 钱春香, 何智海, 等. 东南大学学报(自然科学版),2015,45(2),387.
23 马骁, 叶雄伟, 朱杰, 等. 建筑材料学报,2017,20(4),543.
24 曾波, 李树良, 孟伟.灰色预测理论及其应用, 科学出版社, 2020.
[1] 李紫轩, 李地红, 卞立波, 冯雨琛, 张亚晴, 于海洋. 短切芳纶纤维掺量对水泥基复合材料强度和孔结构的影响[J]. 材料导报, 2021, 35(z2): 638-641.
[2] 王凯伟, 曾凯, 刑保英, 易金权. DP780高强钢胶接点焊过程声发射信号特征及接头强度预测[J]. 材料导报, 2021, 35(6): 6157-6160.
[3] 聂洁, 李传习, 钱国平, 潘仁胜, 裴必达, 邓帅. 钢纤维形状与掺量对UHPC施工及力学特性的影响[J]. 材料导报, 2021, 35(4): 4042-4052.
[4] 侯永强, 尹升华, 赵国亮, 张鹏强, 杨世兴, 张敏哲, 刘洪斌. 聚丙烯纤维增强尾砂胶结充填体力学及流动性能研究[J]. 材料导报, 2021, 35(19): 19030-19035.
[5] 卢京宇, 王林, 雍涵, 王佩勋, 李超. 复掺膨胀剂和纤维对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2): 618-622.
[6] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[7] 梁宁慧, 曹郭俊, 刘新荣, 代继飞, 缪庆旭. 基于三点弯曲试验的聚丙烯纤维桥接应力研究[J]. 材料导报, 2020, 34(2): 2153-2158.
[8] 崔涛, 何浩祥, 闫维明, 钱增志, 周大兴. 混杂纤维水泥基复合材料受压损伤本构模型及试验验证[J]. 材料导报, 2019, 33(20): 3413-3418.
[9] 董越, 杨志强, 高谦. 正交试验协同BP神经网络模型预测充填体强度[J]. 材料导报, 2018, 32(6): 1032-1036.
[10] 梁宁慧,杨鹏,刘新荣,钟杨,郭哲奇. 高应变率下多尺寸聚丙烯纤维混凝土动态压缩力学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 288-294.
[11] 牛建刚, 刘江森, 王佳雷. 聚丙烯粗纤维轻骨料混凝土梁的二次峰值荷载曲线[J]. 《材料导报》期刊社, 2018, 32(14): 2407-2411.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed