Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 660-66    
  高分子与聚合物基复合材料 |
FRP建筑材料的结构性能及应用综述
于冬雪1, 于化杰2, 黎红兵1, 梁爽1
1 四川省建筑科学研究院有限公司,成都 610081
2 山东理工大学材料科学与工程学院,淄博 255000
Structure, Property and Application as Building Materials of FRP: a Review
YU Dongxue1, YU Huajie2, LI Hongbing1, LIANG Shuang1
1 Sichuan Institute of Building Research, Chengdu 610081, China
2 School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
下载:  全 文 ( PDF ) ( 4507KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传统的建筑材料钢材、水泥、混凝土等存在自重大、抗裂性低、耐腐蚀性差等严重问题,给建筑工程留下很多不稳定因素。纤维增强复合材料(FRP)凭借轻质、高强、耐疲劳、耐腐蚀、保温、吸音、无磁、可设计性强等诸多卓越性能,引起工程界的广泛关注。然而其作为建材的发展仍处于起步阶段,尤其是在新建建筑中尚未得到良好的应用。因而,围绕FRP的材料科学与土木工程两大学科领域的交叉融合研究变得尤为关键。   FRP中纤维是力学性能和化学性能的主要贡献部分。常用的增强纤维材料主要包括碳纤维、芳纶纤维、玻璃纤维和玄武岩纤维,其独特的分子结构与化学组成赋予其各自优异的性能。纤维与树脂基体之间的界面结合强度影响FRP性能的有效发挥。采用高能辐射、化学刻蚀、表面接枝等方法对纤维进行改性处理,提高纤维表面的粗糙度与表面能,可有效增强其与基体的机械啮合和化学键合作用。FRP优异的性能使其被加工成纤维布、筋材、板材、管材、格栅、拉锁、锚杆、型材等产品应用于建筑工程领域,目前主要体现在用于既有建筑的加固补强、用作新建建筑的结构材料、用作新建建筑的功能材料三大方面。然而,由于FRP材料力学性能的各向异性、防火性低、性能不稳定及标准体系的不完善等问题,在FRP建材的发展道路上仍需要大量的探索性工作。   本文系统总结了四种常用增强纤维的内部结构与组成,从微观角度分析了增强纤维与树脂基体之间的复合机理,建立了FRP宏观使用性能与其内部结构的相关性,同时对不同类型FRP产品性能的整体与差异性进行了分析讨论。针对建筑工程领域典型的FRP产品与构件进行举例总结,重点介绍了近年来国内外FRP作为建材的应用研究进展,提出其发展所面临的主要问题及可能的应对解决措施,同时对FRP的发展趋势进行了展望。通过对FRP结构-性能-应用的综合系统性梳理,以期为实现其在建筑行业的高价值利用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于冬雪
于化杰
黎红兵
梁爽
关键词:  纤维  纤维增强复合材料(FRP)  新型建筑材料  建筑工程    
Abstract: Traditional building materials, such as steel, cement, and concrete, have serious problems including large dead weight, low crack resis-tance, poor corrosion resistance, and so on, which leave many unstable factors for the architectural engineering. Compared with that, FRP has specific properties including light weight, high strength, fatigue resistance, corrosion resistance, thermal insulation, sound absorption, non-magnetic and strong designability, which make it attract extensive attention in the engineering field. However, its development as building materials is still in the early stage, especially nowadays it has not been well applied in the new buildings. Therefore, it becomes quite important to study the interdisciplinary integration of materials science and civil science in the respect of FRP. The commonly used reinforced fiber materials in FRP mainly include carbon fiber, aramid fiber, glass fiber and basalt fiber, which are the main contribution of mechanical and chemical properties of FRP, and exhibit excellent performances due to their unique molecular structure and chemical composition. The interfacial bonding strength between the fiber and resin matrix has important effects on the effective exertion of FRP perfor-mance. Fiber modification is generally adopted to improve the surface roughness and surface energy, such as high energy radiation, chemical etching, and surface grafting, which can effectively enhance its mechanical occlusion and chemical bonding with the matrix. In view of the excellent properties, in the field of construction engineering FRP materials are processed into fiber cloth, bars, panels, pipes, grids, cables, anchors, profiles, and other products. Their applications are forced on the existing building reinforcement, and the structural and functional materials for the new buildings. But a lot of exploratory work are still needed in the development of FRP building materials, caused by its anisotropy of mechanical property, low fire resistance, unstable performance, the incomplete engineering standard system, etc.. From the perspective of internal structure and performance characteristics of FRP, the molecular structure and chemical composition of four common reinforced fibers are comprehensively summarized in this paper. And the composite mechanism between the reinforced fiber and resin matrix is analyzed from a microscopic view. The correlation between the macroscopic performance of FRP and its internal structure is established. Meanwhile, the whole and different performance of various FRP materials are analyzed and discussed. Then, the typical FRP products and elements in the field of construction engineering are summarized with examples. The application and research progress of FRP as building materials at home and abroad in recent years are summarized. The main problems existing in the development of FRP and the possible solving measures are put forward. In the end, the development trend of FRP is prospected. Through the systematic combing of structure, property, and application of FRP, the purpose of this work is to offer a reference for realizing high value utilization of FRP in the construction industry.
Key words:  fiber    fiber reinforced polymer/plastic (FRP)    new building material    construction engineering
                    发布日期:  2021-12-09
ZTFLH:  TB332  
  TU532  
基金资助: 国家重点研发计划(2017YFC0702900);四川华西集团科技项目(HXKX20181024;HXKX20181027)
通讯作者:  lhb3669@hotmail.com; dxyu163@163.com   
作者简介:  于冬雪,博士。2015年6月硕士研究生毕业于中国地质大学(武汉)材料与化学学院,2020年6月博士研究生毕业于中国科学院过程工程研究所。现就职于四川省建筑科学研究院有限公司。主要从事建筑材料、固体废弃物资源与能源转化研究、以及土木工程相关标准的制修订工作。近年来,在Energy Conversion and Management、Construction and Building Materials、Cement and Concrete Research等期刊发表SCI论文10篇,发表EI论文1篇,发明专利7项。
黎红兵,高级工程师。2010年6月硕士研究生毕业于湖南大学结构工程专业,现就职于四川省建筑科学研究院有限公司,同时攻读湖南大学结构工程专业博士学位。主要从事工程结构检测鉴定与加固改造及相关标准化工作。发表论文10余篇,主参编标准13本。
引用本文:    
于冬雪, 于化杰, 黎红兵, 梁爽. FRP建筑材料的结构性能及应用综述[J]. 材料导报, 2021, 35(z2): 660-66.
YU Dongxue, YU Huajie, LI Hongbing, LIANG Shuang. Structure, Property and Application as Building Materials of FRP: a Review. Materials Reports, 2021, 35(z2): 660-66.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/660
1 吴智深, 汪昕, 吴刚. FRP増强工程结构体系, 科学出版社, 2017.
2 Pour A F, Nguyen G D, Vincent T, et al.Composite Structures, 2020, 252, 1.
3 王彬, 李荣. 科技导报, 2018, 36(19), 64.
4 陈宇飞, 郭艳宏, 戴亚杰. 聚合物基复合材料, 化学工业出版社, 2010.
5 Harano T, Takeichi Y, Usui M, et al.Applied Ences, 2020, 10(14), 1.
6 Weisenberger M, Craddock J. Producing polyacrylonitrile (PAN)-based carbon fibers for fabric by extruding PAN dope through spinneret to produce tow of PAN fibers with lobed cross section, washing, drying, and winding without subjecting to hot drawing, and carbonizing. U.S. patent application, US2020283932-A1, 2020.
7 Chen F X, Yang H Y, Li K, et al. ACS Nano, 2017, 11(10), 10330.
8 蹇木强, 张莹莹, 刘忠范.物理化学学报, 2020, 37(2), 1.
9 Cui H, Jin Z, Zheng D, et al.Construction and Building Materials, 2018, 181(30), 713.
10 贺福, 王茂章. 碳纤维及其复合材料, 科学出版社, 1997.
11 Loidl D, Paris O, Rennhofer H, et al. Carbon, 2007, 45(14), 2801.
12 Nie H J, Xu Z, Tang B L, et al.Journal of Materials Science, 2020, 14, 1.
13 张美云, 罗晶晶, 杨斌, 等. 材料导报, 2020, 34(5), 5158.
14 张素风. 芳纶纤维/浆粕界面及结构与成纸性能相关性研究. 博士学位论文, 陕西科技大学, 2010.
15 李明专, 王君, 鲁圣军, 等. 高分子通报, 2018(1), 58.
16 闫智敬, 马少华, 付坤, 等. 材料导报, 2016, 30(20), 116.
17 Jia C Y, Zhang R Z, Yuan C C, et al. Polymer Composites, 2020, 41(5), 2046.
18 Dong L, Shi M, Xu S, et al.RSC Advances, 2020, 10(38), 22578.
19 Jamshaid H, Mishra R.Journal of the Textile Institute Proceedings & Abstracts, 2016, 107(7), 923.
20 Fiore V, Scalici T, Bella G D, et al. Composites Part B: Engineering, 2015, 74, 74.
21 Iorio M, Santarelli M L, González-Gaitano G, et al.Applied Surface Science, 2018, 427, 1248.
22 Kim S H, Park S J.Journal of Nanoence and Nanotechnology, 2020, 20(11), 6760.
23 赵杏. FRP拉索疲劳损伤演化规律和寿命可控设计方法研究. 博士学位论文, 东南大学, 2018.
24 徐进升. FRP筋力学性能及其混凝土梁受弯性能研究. 博士学位论文, 天津大学, 2007.
25 龙舒畅. 纤维增强复合材料的非线性动力本构与冲击损伤破坏行为. 博士学位论文, 华南理工大学, 2018.
26 谢非. γ-射线辐照强化F-3A芳纶纤维及表面活化改性研究. 博士学位论文, 哈尔滨工业大学, 2018.
27 Rodriguez-Uicab O, Aviles F, Gonzalez-Chi P I, et al.Applied Surface Science, 2016, 385, 379.
28 Zhang H, Yuan L, Liang G, et al.Applied Surface Science, 2014, 320, 883.
29 Hwang H S, Malakooti M H, Patterson B A, et al.Composites Science & Technology, 2015, 107, 75.
30 Hwang H S, Malakooti M H, Sodano H A, et al.Composites Part A: Applied Science and Manufacturing, 2015, 76, 326.
31 Palola S, Vuorinen J, Noordermeer J W M, et al.Coatings, 2020, 10(6), 1.
32 李明专. 表面改性及功能化芳纶结构与性能研究. 硕士学位论文, 贵州大学, 2019.
33 高娜. 纤维增强复合材料在土木工程中的应用. 硕士学位论文, 西安工业大学, 2012.
34 叶列平, 冯鹏. 土木工程学报, 2006(3), 24.
35 陈智. 芳纶纤维加固钢筋混凝土梁正截面承载力研究. 博士学位论文, 湖南科技大学, 2015.
36 牟泓雨. 香格里拉大桥病害处置及加固技术研究. 硕士学位论文, 西南科技大学, 2020.
37 何芳, 武博, 许小海, 等. 天津大学学报 (自然科学与工程技术版), 2020, 53(11), 1197.
38 王静辉, 刘清, 韩风霞, 等. 工程抗震与加固改造, 2017, 39(5), 118.
39 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. GB50728-2011 工程结构加固材料安全性鉴定技术规范, 中国建筑工业出版社, 2011.
40 王海刚, 白晓宇, 张明义, 等. 复合材料科学与工程, 2020(8), 113.
41 Gao D, Fang D, You P, et al.Engineering Structures, 2020, 216, 1.
42 Basaran B, Kalkan I.Composite Structures, 2020, 251, 1.
43 杜泽冬. 装配式BFRP型材-混凝土新型组合梁受弯性能研究. 硕士学位论文, 河北工程大学, 2020.
44 Siwowski T, Rajchel M, Kulpa M.Composite Structures, 2019, 230, 1.
45 Muc A, Stawiarski A Chwał M, Composite Structures, 2020, 247, 1.
46 陈泽. 5000 m跨径CFRP缆索悬索桥概念设计与抗风稳定性分析. 硕士学位论文, 西南交通大学, 2016.
47 Pan Y, Wu C, Cheng X, et al.Construction and Building Materials, 2020, 230, 116898.
48 袁谱, 张攀, 冯鹏. 玻璃钢/复合材料, 2012(5), 9.
49 郑毅. FRP夹芯板在复杂曲面桥梁封护系统中的应用技术研究. 硕士学位论文, 清华大学, 2017.
50 Florence A, Jaswin M A, Prakash M D A A, et al.Materials Research Innovations, 2020, 24(4), 244.
51 张建. 一种复合材料地暖板. 专利, CN110762594, 2019.
52 张嵩阳, 王磊磊, 姚德贵, 等. 一种电力设施轻质高强度吸声板. 专利, CN110904872, 2019.
53 马英怡, 刘玉德, 石文天, 等. 材料导报, 2020, 34(16), 16177.
54 Yang B, Wang L, Zhang M Y, et al.Advanced Functional Materials, 2020, 30(22), 1.
55 赵启林, 高一峰, 李飞. 玻璃钢/复合材料, 2014(12), 52.
56 张壮壮. FRP筋与普通钢筋混合配筋梁受弯性能试验研究. 硕士学位论文, 江苏大学, 2018.
57 诸葛萍, 丁勇, 卢彭真, 等. 复合材料学报, 2014, 31(1), 248.
58 Shenderova O A, Grichko V P. UV protective coatings. patent, US990948, 2009.
59 Acharya B N, Gupta G P, Prakash S, et al.Pigment Resin Technology, 2005, 34(5), 270.
60 Khunphonoi R, Grisdanurak N.Chemical Engineering Journal, 2016, 296, 420.
[1] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[2] 蒋星宇, 王洁琼, 邱琳琳, 白冰, 金正飞, 梅德强, 杜平凡. 碳基纤维材料在能源领域的应用[J]. 材料导报, 2021, 35(z2): 470-478.
[3] 雷颖, 葛冲冲, 冯瑾, 尚娇娇. pH响应型三维纳米纤维的构建及其性能研究[J]. 材料导报, 2021, 35(z2): 508-512.
[4] 薛丽媛, 黄锋林, 徐文晴. 负载球状Zn/Al-LDH的壳聚糖海绵的制备及微纤维去除性能研究[J]. 材料导报, 2021, 35(z2): 554-557.
[5] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[6] 杨俊, 何创创, 罗小芳. 短切玻纤含量对TiO2/PTFE复合材料性能的影响[J]. 材料导报, 2021, 35(z2): 570-572.
[7] 张奇, 张震东, 任杰. 正六边形玻璃纤维增强复合材料多胞结构准静态压缩试验研究[J]. 材料导报, 2021, 35(z2): 573-578.
[8] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[9] 李紫轩, 李地红, 卞立波, 冯雨琛, 张亚晴, 于海洋. 短切芳纶纤维掺量对水泥基复合材料强度和孔结构的影响[J]. 材料导报, 2021, 35(z2): 638-641.
[10] 郑海宇, 王琴, 王悦, 张瑞峰, 刘克俊. 环境温度对纤维素醚改性石膏工作性的影响[J]. 材料导报, 2021, 35(z2): 649-654.
[11] 吴磊, 陶忠, 赵志曼, 陶燕, 张毅, 刘卓. 基于NSGM(1,3)模型的短切聚丙烯纤维-磷建筑石膏复合材料强度预测[J]. 材料导报, 2021, 35(z2): 655-659.
[12] 于泽明, 陈艳, 马嵘萍, 胡晓辰, 吕祥锋. 动/静荷载作用纤维-矿粉-聚苯乙烯混凝土吸能特征研究[J]. 材料导报, 2021, 35(z2): 669-677.
[13] 时钢印, 彭龙泉, 马莉. 基于专利视角的偏光片用三醋酸纤维素膜发展研究[J]. 材料导报, 2021, 35(z2): 678-683.
[14] 胡炜杰, 钟明建, 杨营, 盘茂森, 任清刚. 碳纤维复合材料的回收与再利用技术[J]. 材料导报, 2021, 35(z2): 627-633.
[15] 张勇, 郝永刚. 石墨烯及氧化石墨烯在纺织领域的应用[J]. 材料导报, 2021, 35(Z1): 78-82.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed