Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 385-390    
  金属与金属基复合材料 |
粉末高温合金夹杂物引起疲劳裂纹萌生微观机理研究现状
刘佳宾, 刘新灵, 李振
北京航空材料研究院,北京 100095
Research Status of Micro-mechanism of Fatigue Crack Initiation Caused by Inclusions in Powder Superalloy
LIU Jiabin, LIU Xinling, LI Zhen
Beijing Institute of Aviation Materials Research, Beijing 100095, China
下载:  全 文 ( PDF ) ( 9545KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着航空发动机的发展,对核心耐热部件涡轮盘的服役要求不断提高,镍基粉末高温合金已经成为涡轮盘的首选材料。目前在制备粉末高温合金涡轮盘时不可避免地会引入夹杂物缺陷,夹杂物的存在会导致合金的力学性能,尤其是低周疲劳性能明显降低。为建立带缺陷的粉末高温合金疲劳寿命模型,研究合金中夹杂物的开裂和萌生机理就显得十分必要。   国内外学者对合金中夹杂物的成分、形状、位置、尺寸及自身特性等对疲劳性能的影响做了大量研究,并取得了一定的进展,在细观力学的尺度上解释了各种夹杂物的疲劳开裂模式机理;近年来一些学者采用先进的检测手段,从位错、残余应力和应变能等微观力学角度,对夹杂物的开裂机理进行解释。本文首先明确了粉末高温合金中夹杂物的分类、来源等问题,之后介绍了粉末高温合金疲劳寿命预测的研究方法和模型,结合目前存在的问题,指出夹杂物开裂机理研究是建立可靠粉末高温合金疲劳寿命预测模型的关键。   同时思考了夹杂物导致裂纹萌生的研究目前所存在的问题,指出在研究裂纹萌生机理时,应将多尺度上的表征和特性进行联系,在微观-细观-宏观三种尺度上分析裂纹萌生过程中相互的响应关系,从而为建立考虑缺陷的粉末高温合金疲劳裂纹萌生寿命方法奠定基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘佳宾
刘新灵
李振
关键词:  粉末高温合金  夹杂物  疲劳  微观机理    
Abstract: With the development of aero-engine, the service requirements of turbine disk, the core heat-resistant component, are increasing, and nic-kel-based powder superalloy has become thefirst choice material for turbine disk. At present, it is inevitable to introduce inclusion defects in the preparation of powder superalloy turbine disk, and the existence of inclusions will lead to the obvious reduction of the mechanical properties of the alloy, especially the low cycle fatigue performance. In order to establish the fatigue life model of powder superalloy with defects, it is necessary to study the cracking and initiation mechanism of inclusions in the alloy. After clarifying the classification and source of inclusions in powder superalloys, scholars at home and abroad have done a lot of research on the influence of composition, shape, position, size and self-characteristics of inclusions on fatigue properties, and made some progress, explaining the fatigue cracking mode mechanism of various inclusions on the scale of micromechanics. In recent years, some scholars have used advanced detection methods to explain the cracking mechanism of inclusions from themicromechanical angles of dislocation, residual stress and strain energy. Then, the research method and model of fatigue life prediction of powder superalloy are introduced. Combined with the existing problems, it is pointed out that the study of inclusion cracking mechanism is the key to establishing a reliable fatigue life prediction model of powder superalloy. The existing problems in the research of crack initiation caused by inclusions are considered, and it is pointed out that when studying the crack initiation mechanism, the multi-scale characterization and characteristics should be linked, and the mutual response relationship in the crack initiation process should be analyzed on the micro-meso-macro scale, thus laying a foundation for establishing the fatigue crack initiation life method of powder superalloy considering defects.
Key words:  powder superalloy    inclusion    fatigue    microscopic mechanism
                    发布日期:  2021-12-09
ZTFLH:  TB-31  
基金资助: 航空发动机及燃气轮机重大专项基础研究(2017-Ⅳ-0004-0041)
通讯作者:  liuxinling119@163.com   
作者简介:  刘佳宾,2019年6月毕业于哈尔滨工程大学,获工学学士学位。现为中国航发北京航空材料研究院硕士研究生,在刘新灵研究员指导下进行研究。目前主要研究领域为金属材料失效分析及断裂损伤机理。
刘新灵,女,博导,研究员。获省部级奖4项,发表文章50篇左右,第一作者著作3部,《疲劳断口定量分析》获国防工业出版社出版基金资助出版。中国机械工程学会失效分析分会委员;中航工业失效分析人员资格鉴定委员会委员,《失效分析与预防》杂志副主编。负责973、国家863、两机专项、国防技术基础等多项科研项目。主要从事失效分析与预防、寿命预测与安全评估、疲劳断口定量分析、失效分析专家系统和先进高温合金材料损伤行为研究。
引用本文:    
刘佳宾, 刘新灵, 李振. 粉末高温合金夹杂物引起疲劳裂纹萌生微观机理研究现状[J]. 材料导报, 2021, 35(z2): 385-390.
LIU Jiabin, LIU Xinling, LI Zhen. Research Status of Micro-mechanism of Fatigue Crack Initiation Caused by Inclusions in Powder Superalloy. Materials Reports, 2021, 35(z2): 385-390.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/385
1 胡连喜, 冯小云. 粉末冶金工业,2018,28(4),1.
2 张义文, 刘建涛. 中国材料进展,2013,32(1),1.
3 宋迎东,高德军. 燃气涡轮试验与研究, 1997(4),48.
4 赵军普,陶宇,贾建,等. 粉末冶金工业,2010,20(4),43.
5 周静怡,刘昌奎,赵文侠,等. 航空材料学报,2017,37(5),83.
6 张国星,韩寿波,孙志坤. 粉末冶金工业,2015,25(1),42.
7 闫来成,燕平,赵京晨. 钢铁研究学报. 2012,24(1),48.
8 曲敬龙,张雪良,杨树峰,等. 粉末冶金工业,2020,30(5),1.
9 韩志宇,曾光,梁书锦,等. 中国材料进展,2014,33(12),748.
10 刘新灵, 陶春虎. 材料导报, 2013,27(S1),436.
11 张丽娜,张麦仓,李晓,等. 兵器材料科学与工程,2001,24(3),64.
12 周晓明. 粉末高温合金中非金属夹杂物的遗传特征及损伤力学行为研究.博士学位论文,北京航空材料研究院,2006.
13 王传玉. 镍基合金中非金属夹杂物研究. 硕士学位论文,兰州理工大学,2009.
14 周晓明,汪武祥,王旭青. 航空材料学报,2006,26(3),1.
15 Shamblen C E, Metallurgical Transactions B, 1985, 168,775.
16 Huron E,Roth P. In:Conference Record of 8th International Symposium on Superalloys. Champion, 1996, pp.359.
17 国为民,吴剑涛,张凤戈,等. 粉末冶金工业,2000,10(3),23.
18 Hou J, Dong J. Materials Science Forum,2017,898,505.
19 Telesmana J, Gabba TP, Kantzosb P T. International Journal of Fatigue,2021,142,1.
20 邹金文,汪武祥. 粉末冶金技术,2001,19(1),7.
21 何承群,余泉茂,胡本芙. 金属学报,2001,37(3),247.
22 谢锡善,张丽娜,张麦仓,等. 金属学报,2002,38(6),635.
23 张丽娜,张麦仓,李晓,等. 北京科技大学学报,2002,24(4),432.
24 曾燕屏,张麦仓,董建新. 材料工程,2005(3),10.
25 Jablonski D A. Materials Science and Engineering Volume,1981,42(2),189.
26 Bretheau T, et al. Strength of Metal and alloy, Finland.1988.
27 Ambroise W H, et al.In:Conference Record of Mechanical Behavior of Materials-V. Beijing, 1987, pp.169.
28 刘新灵,胡春燕,王天宇. 失效分析与预防,2018,13(2),89.
29 刘新灵,陶春虎,王天宇. 材料导报,2019, 33(Z1),436.
30 刘新灵,陶春虎,王天宇.材料热处理学报,2019,40(4), 136.
31 Jiang J,Yang J,Zhang T. Acta Materialia,2016,117(15),333.
32 Jiang J,Yang J,Zhang T. Acta Materialia,2015,97(15),367.
33 Sangid M,Maier H,Sehitoglu H. Journal of the Mechanics and Physics of Solids, 2011,59(3),595.
34 Wan V,MacLachlan D,Dunne F. International Journal of Fatigue,2014,68,90.
35 Zhang T, Jiang J, Barbara A. Materials Science and Engineering, 2015, 641(12),328.
36 Zhang T, Jiang J, Britton B,et al. Subject Areas,2016,472,1.
37 Zhang T,Collins D,Dunne F,et al. Acta Mater,2014,80,25.
38 Alexander B,Fionn P.E, Dunne. International Journal of Fatigue, 2020,135,1.
39 刘丽玉, 陶春虎, 刘昌奎, 等, 机械工程材料, 2014,38(8),315.
40 Hong H, Kim I, Choi B, et al, Mater Lett, 2008,62(28),4351.
41 Pineau A, Antolovich S, Eng Fail Anal,2009,16,2668.
42 Ren W, Nicholas T, Mater Sci Eng A, 2002,332,236.
43 Miao J, Pollock T, Wayne J. Acta Mater,2012,60,2840.
44 刘相新. 基于损伤力学的粉末高温合金(FGH95)寿命预测模型及实验研究. 硕士学位论文, 北京航空航天大学,2005.
45 胡绪腾.粉末高温合金高温疲劳寿命模型研究. 硕士学位论文, 南京航空航天大学,2005.
46 Bussac A, Lautridou J, Fatigue & Fracture of Engineering Materials & Structure, 1993,16,861.
47 Bruckner F, Jackels H, Quadfasel U. Fatigue & Fracture of Engineering Materials & Structure,1993,16(8), 891.
48 Grison J, Remy, L. Fatigue & Fracture of Engineering Materials & Structure,1997,57(1),41.
49 王天宇. 粉末高温合金缺陷定量评价及萌生寿命预测方法研究. 硕士学位论文, 北京航空材料研究院, 2016.
50 魏大盛, 陈妍妍, 王延荣, 等. 航空动力学报, 2019, 32(1),92.
51 任远, 张程程, 高靖云, 等. 科学技术与工程,2016, 16(14),61.
[1] 王一名, 常立君, 李滢. 废弃混凝土再生微粉固化盐渍土的强度特性及微观机理研究[J]. 材料导报, 2021, 35(z2): 268-274.
[2] 张雷, 庄毅, 李姗姗, 唐毓婧, 李静, 罗欣. 不同工况下车用复合材料板簧的动态疲劳测试研究[J]. 材料导报, 2021, 35(z2): 583-588.
[3] 魏建峰, 宋铁鹏, 王国承. 钢凝固过程元素偏析和夹杂物生成预报模型研究进展[J]. 材料导报, 2021, 35(Z1): 454-461.
[4] 孙朋飞, 姚丹丹, 张鹏林, 王董琪琼, 侯嘉鹏, 王强, 张哲峰. 金属焊接接头疲劳寿命延长技术综述[J]. 材料导报, 2021, 35(9): 9059-9068.
[5] 梁波, 兰芳, 郑健龙. 沥青的老化机理与疲劳性能关系的研究进展[J]. 材料导报, 2021, 35(9): 9083-9096.
[6] 卢兵兵, 王海斗, 董丽虹, 赵云才, 王慧鹏. 金属磁记忆疲劳损伤检测的应用现状及发展前景[J]. 材料导报, 2021, 35(7): 7139-7144.
[7] 龚园军, 张军, 毛江鸿, 金伟良, 谭昱, 罗林. 电化学修复后不同含氢钢筋的低周疲劳性能试验研究[J]. 材料导报, 2021, 35(6): 6146-6150.
[8] 刘扬, 曾丹, 曹磊, 王达. 钢-UHPC组合结构桥梁研究进展[J]. 材料导报, 2021, 35(3): 3104-3113.
[9] 付磊, 林莉, 罗云蓉, 谢文玲, 王清远, 李辉. 梯度纳米结构材料疲劳性能研究进展[J]. 材料导报, 2021, 35(3): 3114-3121.
[10] 安子乾, 舒茂盛, 程羽佳, 郭鑫, 刘小冬, 程小全. 3钉带衬套复合材料/金属接头拉伸疲劳性能试验研究[J]. 材料导报, 2021, 35(20): 20081-20086.
[11] 喻宣瑞, 姚国文, 范伟庆. 交变荷载和氯盐环境作用下钢绞线的腐蚀疲劳性能研究[J]. 材料导报, 2021, 35(20): 20087-20091.
[12] 余明华, 高杰维, 刘里根, 李亚波, 韩靖, 戴光泽, 赵君文. 外物损伤对S38C车轴钢疲劳性能的影响[J]. 材料导报, 2021, 35(20): 20092-20098.
[13] 刘敬萱, 沈健, 李锡武, 闫丽珍, 闫宏伟, 刘宏伟, 温凯, 李亚楠. 6005A-T5铝合金搅拌摩擦焊接头组织与疲劳性能[J]. 材料导报, 2021, 35(2): 2092-2097.
[14] 董振东, 童志, 周洪宇, 王慧敏, 郑文跃, 孙晓冉, 丁辉. 抽油杆钢材的发展和抽油杆的服役失效[J]. 材料导报, 2021, 35(19): 19161-19169.
[15] 张喜军, 仝配配, 蔺习雄, 李剑新, 李波. 基于线性振幅扫描试验评价硬质沥青的疲劳性能[J]. 材料导报, 2021, 35(18): 18083-18089.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed