Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 121-126    
  无机非金属及其复合材料 |
新型五温区碲化汞单晶炉热场结构数值模拟
唐宏波, 解永强, 张红梅, 王宏杰, 胡北辰
中国电子科技集团公司第二研究所,太原 030024
Numerical Simulation of Thermal Field Structure of a New Type of Mercury Telluride Single Crystal Furnace with Five Temperature Zones
TANG Hongbo, XIE Yongqiang, ZHANG Hongmei, WANG Hongjie, HU Beichen
China Electronic Science and Technology Group Company No.2 Institute, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 8837KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碲化汞(HgTe)晶体材料由于其优越的光电性能,在大面阵红外探测器领域有着广阔的应用前景。为了获得更适合HgTe单晶制备的温度梯度,本实验提出了一种新型五温区HgTe单晶炉热场结构,并通过对单晶炉内热场的数值模拟计算,得出了不同晶体生长阶段炉体内部的温度分布,获得了相应的温度梯度和热流密度分布,计算出梯度区内温度梯度约4.88 ℃/cm;同时搭建了五区加热试验平台,经过试验测得梯度区内温度梯度约为4.96 ℃/cm。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐宏波
解永强
张红梅
王宏杰
胡北辰
关键词:  碲化汞  热场结构  数值模拟  温度梯度    
Abstract: HgTe crystal materials have a wide application prospect in the field of large array infrared detector due to its excellent photoelectric properties. In order to obtain HgTe single crystal with excellent temperature gradient performance, a new improved structure of thermal field in mercury telluride single crystal furnace is proposed. Through numerical simulation of the heat field in the furnace, the temperature distribution and the corresponding temperature gradient and heat flux density distribution in the furnace at different growth stages of the crystal are obtained. The temperature gradient in the furnace is about 4.88 ℃/cm;a five-zone heating test platform is set up,and the temperature gradient in the gradient zone is about 4.96 ℃/cm.
Key words:  mercury telluride    thermal field    numerical simulation    temperature gradient
                    发布日期:  2021-12-09
ZTFLH:  TN213  
通讯作者:  thbnuaa@126.com   
作者简介:  解永强,2004年7月至今任职于中国电子科技集团公司第二研究所,现任部门副主任。研究工作主要围绕三代半导体材料、红外光学材料等的制备,开展关于材料生长设备的研制与开发。先后参加1项国家863计划,1项国家基础科研专项,2项科工局基础科研专项,多项省重大专项及集团公司科研专项。
引用本文:    
唐宏波, 解永强, 张红梅, 王宏杰, 胡北辰. 新型五温区碲化汞单晶炉热场结构数值模拟[J]. 材料导报, 2021, 35(z2): 121-126.
TANG Hongbo, XIE Yongqiang, ZHANG Hongmei, WANG Hongjie, HU Beichen. Numerical Simulation of Thermal Field Structure of a New Type of Mercury Telluride Single Crystal Furnace with Five Temperature Zones. Materials Reports, 2021, 35(z2): 121-126.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/121
1 常本康, 蔡毅, 红外成像阵列与系统, 科学出版社, 2006.
2 Seyam M A, Elfalaky A. Vacuum, 2000, 57(1),31.
3 Fradkin L, Langof L, Lifshitz E, et al. Physica E, 2005, 26(1),9.
4 Shopova S I, Farca G, Rosenberger A T, et al. Applied Physics Letters, 2004, 85(25),6101.
5 Chen, Dresselhaus, Fleurial, et al. International Materials Reviews, 2003,48(1),45.
6 Somonjai G A, Van Hove M A. Structure and bonding, Spring-Verlag, Berlin, 1979.
7 蒋坤朋,廖雷,蒋丽,等.材料导报:综述篇, 2012, 26(11), 8.
8 Shimony Y, Kimmel G, Raz O, et al.Journal of Crystal Grouth, 1999, 198-199,583.
9 金敏,白旭东,赵素,等.无机材料学报, 2021, 36(3),313.
10 马雁冰,刘滔,邹鹏程,等.红外技术, 2009, 31(4),240.
[1] 赵金猛, 卢林, 王静荣, 张亮, 吴文恒, 朱冬, 郭帅东, 肖从越. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(z2): 410-416.
[2] 孙鹏飞, 吕平, 黄微波, 张锐, 方志强, 桑英杰. 喷涂抗爆型聚脲钢筋混凝土板抗爆性能研究[J]. 材料导报, 2021, 35(z2): 642-648.
[3] 汪海波, 于海群, 童水光, 唐宁, 徐永亮. 引晶直径对扩肩形态影响的数值模拟及实验研究[J]. 材料导报, 2021, 35(Z1): 186-188.
[4] 莫东鸣. 高Prandtl数双层流体的热毛细对流数值模拟[J]. 材料导报, 2021, 35(Z1): 302-305.
[5] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[6] 张铃, 杨钦如, 余梦, 黄锐明, 程其进. CuSCN作为石墨烯/硅异质结太阳能电池无机界面层的数值模拟[J]. 材料导报, 2021, 35(4): 4001-4006.
[7] 陈克选, 王向余, 李宜炤, 陈彦强, 杜茵茵. 水冷条件下WAAM温度场的数值模拟研究[J]. 材料导报, 2021, 35(4): 4165-4169.
[8] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[9] 任鑫, 窦春岳, 高志玉, 庄达, 齐鹏涛, 何维. 热处理数值模拟技术的研究进展[J]. 材料导报, 2021, 35(19): 19186-19194.
[10] 王东哲, 秦溶蔓, 孙娜, 杜明远, 腾凌虹, 曹伟伟, 朱波. 陶瓷/纤维复合装甲抗弹丸侵彻性能的试验与数值模拟研究[J]. 材料导报, 2021, 35(18): 18216-18221.
[11] 尹华伟, 胡传波, 姚鑫, 陈琪雅, 胡雷, 卢增辉. 二维平移法小尺寸KDP单晶生长溶液流动与传质模拟[J]. 材料导报, 2021, 35(12): 12032-12038.
[12] 朱康杰, 钱春香, 李敏, 苏依林. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(Z2): 212-216.
[13] 刘轶伦. 高速铁路Cu-Cr-Zr合金承导线对连续挤压工艺的适应性[J]. 材料导报, 2020, 34(8): 8131-8135.
[14] 徐国财, 黎军顽, 左鹏鹏, 吴晓春. 热-机械载荷下H13钢力学响应行为实验和数值分析[J]. 材料导报, 2020, 34(8): 8159-8164.
[15] 周蕊, 刘众旺, 张建国, 刘兵飞, 杜春志. 基于DPC-CZM混合模型的金属粉末压坯裂纹三维数值模拟[J]. 材料导报, 2020, 34(6): 6151-6155.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed